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a b s t r a c t

Anti-Gauss quadrature formulae associatedwith four classical Chebyshevweight functions
are considered. Complex-variable methods are used to obtain expansions of the error in
anti-Gaussian quadrature formulae over the interval [−1, 1]. The kernel of the remainder
term in anti-Gaussian quadrature formulae is analyzed. The location on the elliptic contours
where the modulus of the kernel attains its maximum value is investigated. This leads
to effective L∞-error bounds of anti-Gauss quadratures. Moreover, the effective L1-error
estimates are also derived. The results obtained here are an analogue of some results
of Gautschi and Varga (1983) [11], Gautschi et al. (1990) [9] and Hunter (1995) [10]
concerning Gaussian quadratures.
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1. Introduction

Let w be a given nonnegative and integrable weight function on the interval [−1, 1]. Let us denote by pk the monic
polynomial of degree k, which is orthogonal to Pk−1 (Pk denotes the set of polynomials of degree at most k) with respect to
w, i.e.  1

−1
xjpk(x)w(x)dx = 0, j = 0, 1, . . . , k − 1,

and let us recall that (pk) satisfies a three-term recurrence relation of the form
pk+1(x) = (x − ak)pk(x) − bkpk−1(x), k = 0, 1, . . . , (1.1)

where p−1(x) = 0, p0(x) = 1 and the bk’s have the property of being positive.
The unique interpolatory quadrature formula with n nodes and the highest possible degree of exactness 2n − 1 is the

Gaussian formula with respect to the weight w, 1

−1
f (x)w(x)dx = Gn[f ] + En(f ), Gn[f ] =

n
j=1

λG
j f

xGj


(n ∈ N). (1.2)

In [1], Laurie introduced quadrature rules that he referred to as anti-Gauss associated with the weight w, 1

−1
f (x)w(x)dx = An+1[f ] + Rn+1(f ), An+1[f ] =

n+1
j=1

λA
j f

xAj


(n ∈ N). (1.3)
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This is an (n + 1)-point interpolatory formula of degree 2n − 1 which integrates polynomials of degree up to 2n + 1 with
an error equal in magnitude but opposite sign to that of the n-point Gaussian formula (1.2). Its intended application is to
estimate the error incurred in Gaussian integration by halving the difference between the results obtained from the two
formulae. Concerning with this and related problematic there appeared several papers in the last time, see [2–8]. Laurie [1]
showed that an anti-Gaussian quadrature formula has positive weights and that its nodes are in the integration interval
(except that for someweight functions, at most two of the nodes may be outside the integration interval) and are interlaced
by those of the corresponding Gaussian formula. The anti-Gaussian formula is as easy to compute as the (n + 1)-point
Gaussian formula. Finally, the anti-Gaussian quadrature formula (1.3) is based on the zeros of polynomial

πn+1 = pn+1 − bnpn−1, (1.4)

which is orthogonal subject to the linear functional 2

[·]w(x)dx − Gn[·].

In this paper w represents one of four classical Chebyshev weight functions:

w1(t) =
1

√
1 − t2

, w2(t) =


1 − t2, w3(t) =


1 + t
1 − t

, w4(t) =


1 − t
1 + t

.

In these cases all nodes of the anti-Gauss quadrature formula (1.3), i.e., all zeros of the corresponding polynomial πn+1,
belong to the interval [−1, 1]. They are, in the same time, the Kronrod nodes (see [1]).

2. On the remainder term of anti-Gauss quadrature formulae for analytic functions

LetΓ be a simple closed curve in the complex plane surrounding the interval [−1, 1] and letD be its interior. If integrand
f is analytic on D and continuous on D, and if all nodes of anti-Gauss quadrature formula belong to the interval [−1, 1], then
the remainder term Rn+1(f ) in (1.3) admits the contour integral representation

Rn+1(f ) =
1

2π i


Γ

Kn+1(z)f (z)dz. (2.1)

The kernel is given by

Kn+1(z) =
ϱn+1(z)
πn+1(z)

, z ∉ [−1, 1], (2.2)

where

ϱn+1(z) =

 1

−1

πn+1(x)
z − x

w(x)dx.

The modulus of the kernel is symmetric with respect to the real axis, i.e., |Kn+1(z)| = |Kn+(z)|. If the weight function w is
even, the modulus of the kernel is symmetric with respect to both axes, i.e., |Kn+1(−z)| = |Kn+1(z)| (see [9]).

In many papers error bounds of |En(f )|, i.e., of the modulus of the remainder term in Gauss quadrature formula (1.2),
where f is an analytic function, are considered. Two choices of the contour Γ have been widely used:

• a circle Cr with a center at the origin and a radius r (> 1), i.e., Cr = {z | |z| = r}, r > 1, and
• an ellipse Eρ with foci at the points ∓1 and a sum of semi-axes ρ > 1,

Eρ =


z ∈ C | z =

1
2


ξ + ξ−1 , ξ = ρ eiθ , 0 ≤ θ ≤ 2π


. (2.3)

When ρ → 1 the ellipse shrinks to the interval [−1, 1], while with increasing ρ it becomes more and more circle-like. The
advantage of the elliptical contours, compared to the circular ones, is that such a choice needs the analyticity of f in a smaller
region of the complex plane, especially when ρ is near 1. In this paper we take Γ to be the ellipse Eρ .

The integral representation (2.1), for the remainder term in the anti-Gauss quadrature formula (1.3), leads to a general
error estimate, by using Hölder’s inequality,

|Rn+1(f )| =
1
2π




Eρ

Kn+1(z)f (z)dz


≤

1
2π


Eρ

|Kn+1(z)|r |dz|

1/r 
Eρ

|f (z)|r
′

|dz|

1/r ′

,

i.e.,

|Rn+1(f )| ≤
1
2π

∥Kn+1∥r∥f ∥r ′ ,



Download	English	Version:

https://daneshyari.com/en/article/6422975

Download	Persian	Version:

https://daneshyari.com/article/6422975

Daneshyari.com

https://daneshyari.com/en/article/6422975
https://daneshyari.com/article/6422975
https://daneshyari.com/

