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a b s t r a c t

We propose a modified adaptive multiresolution scheme for solving d-dimensional
hyperbolic conservation laws which is based on cell-average discretization in dyadic
grids. Adaptivity is obtained by interrupting the refinement at the locations where
appropriate scale (wavelet) coefficients are sufficiently small. One important aspect of such
a multiresolution representation is that we can use the same binary tree data structure for
domains of any dimension. The tree structure allows us to succinctly represent the data
and efficiently navigate through it. Dyadic grids also provide a more gradual refinement as
comparedwith the traditional quad-trees (2D) or oct-trees (3D) that are commonly used for
multiresolution analysis. We show some examples of adaptive binary tree representations,
with significant savings in data storage when compared to quad-tree based schemes. As
a test problem, we also consider this modified adaptive multiresolution method, using a
dynamic binary tree data structure, applied to a transport equation in 2D domain, based on
a second-order finite volume discretization.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of an adaptive grid refinement technique for partial differential equations (PDE) is to save computational
resources while preserving the accuracy of the solution with respect to the uniform discretization in the finest scale level.
Grid adaptation means that refined grids are used only where they are required, such as in regions where the solution
exhibits localized strong features.

In this paper, we are concerned with adaptive multiresolution (MR) schemes. The principle is to use a multiresolution
representation of the solution, with the MR coefficients being used as local regularity indicators. Thus, an adaptive grid can
be introduced by a thresholding procedure, where only significant coefficients are retained. Discarding the small coefficients
leads to coarse grids in regions where the solution is smooth, and the refinement occurs close to irregularities, where the
coefficients are significant. This technique can lead to significantmemory savings and accelerate considerably the simulation
with respect to the discretization on the finest uniform mesh, without contaminating its accuracy. In combination with
finite volume discretization and multiresolution analyses for cell averages, MR schemes have been successfully applied to
conservation laws ([1–8]). For an overview on adaptiveMR techniques, we refer to the books of Cohen [9] andMüller [3], and
also to the review paper Schneider and Vasilyev [10], where the authors not only revisit the adaptivewaveletmethodologies
in fluid dynamics, but also give some perspectives for modeling and computing industrially relevant flows.
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Fig. 1. The cells in the first 8 levels of a two-dimensional dyadic multigrid.

In order to support MR techniques, a memory-efficient data structure, with fast access to the stored data, is required.
Usually, dynamic tree data structures or hash tables are used. Our purpose is to present an MR scheme for d-dimensional
hyperbolic conservation laws, which is based on cell-average discretization in dyadic grids [11]. A dyadic grid is a hierarchy
of meshes where a cell at a certain level is partitioned into two equal children at the next refined level by a hyperplane
perpendicular to one of the coordinate axes, which varies cyclically from level to level. Adaptivity is obtained by interrupting
the refinement at the locations where appropriate scale (wavelet) coefficients are sufficiently small. One important aspect
of such an MR representation is that we can use the same binary tree data structure for domains of any dimension. The
tree structure allows us to succinctly represent the data and efficiently navigate through it. Dyadic grids also provide a
more gradual refinement as compared with the traditional quad-trees (2D) or oct-trees (3D) that are commonly used for
multiresolution analyses.

The present text is organized as follows. In Section 2, we present a brief discussion about dyadic grids, and their
representations. Section 3 is dedicated to a multiresolution representation for cell averages based on dyadic grids. Then,
some examples showing the efficiency of dyadic grids in 2D, as compared to quad-grids, are discussed. In Section 4, we
describe the adaptive MR finite volume scheme, giving a description of the algorithm. For the reference scheme in uniform
grid, we use a finite volume discretization in space and an explicit second-order Runge–Kutta scheme in time. For the
numerical flux, we use Roe’s scheme with a second-order essentially non-oscillatory (ENO) interpolation, which gives a
second-order accurate scheme in space. In Section 5, we present the results of the adaptive MR scheme on dyadic grids. As a
test problem, we consider the transport equation in 2D domain. Our tests show significant savings in data storage and CPU
time when compared to the reference scheme in uniform grid at the finest scale level.

2. Dyadic grids

In this section, we present the basic concepts related to dyadic grids. More details can be seen at Cardoso et al. [11,12].
We consider the coordinate axes of Rd numbered from 0 to d−1, so that a vector x ∈ Rd has coordinates x0, x1, . . . , xd−1.
A k-dimensional box (or k-box for short) of Rd is a Cartesian product of d subsets of R, I0 × I1 × · · · × Id−1, where k of

the sets Ii are bounded open intervals (ai, bi) ⊆ R, and the remaining d − k are singleton sets {xi} where xi ∈ R. Thus, for
example, a zero-dimensional box is a point of Rd; a one-dimensional box is a line segment parallel to some coordinate axis;
a two-dimensional box is a rectangle with sides parallel to two axes; and so on.

The facets of a k-box are the (k − 1)-boxes obtained by replacing any open interval (ai, bi) in the Cartesian product by a
singleton set, either {ai} or {bi}. Thus a k-box has 2k facets. The faces of a k-box are recursively defined as the box itself and
the faces of its facets; namely 3k boxes in total.

2.1. Toroidal d-space

Let R be a fixed d-box in Rd, which we call the root cell; namely R = (a0, b0) × (a1, b1) × · · · × (ad−1, bd−1). We say that
two points p, q ∈ Rd are equivalent, written p ≡ q, if and only if pi−qi is an integermultiple of the boxwidth bi−ai, for every
coordinate index i ∈ {0, . . . , d − 1}. We define the d-torus, denoted here by Td, as the quotient of Rd by the equivalence
relation ≡.

2.2. Dyadic grids

A dyadic multiscale grid (or multigrid) is a collection G of boxes which are subsets of a toroidal space Td. These subsets
(the grid elements) include the root cell and all its faces, as well as every box that is obtained from them by a series of finite
dyadic bisections, to be defined below. Dyadic grid elementswith dimension k = d are called cells. Elementswith dimension
k = 0, 1, 2, 3 are named, respectively, vertices, edges, faces, and blocks of grid.

Each element has a depth, which is the number of bisection steps needed to produce it from one of those root boxes. The
level ℓ of G is the set of all elements of G with depth ℓ, denoted by Gℓ.

A dyadic bisection consists in splitting a k-box c ∈ G, with k > 0, into two congruent k-boxes (the children of c) and a
(k − 1)-box which is a facet of both. If c has depth ℓ, the split is performed by a hyperplane orthogonal to the coordinate
axis number ℓ mod d. That is, the orientation of the split alternates cyclically as the depth increases. See Fig. 1 (for d = 2)
and Fig. 2 (for d = 3).
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