FISEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

The approximation of functions from $L \log L(\log \log L)(S^N)$ by Fourier–Laplace series^{*}

Anvarjon A. Ahmedov a,*, Norashikin Abdul Aziz b

- ^a Department of Process and Food Engineering, Faculty of Engineering & Institute for Mathematical Research, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- b Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia

ARTICLE INFO

Article history: Received 26 October 2010 Received in revised form 16 June 2011

MSC: 35J25

35P10 42B08

42B25

42B35

Keywords:
Approximation
Fourier-Laplace series
Riesz means
Spectral function
Eigenfunction of the Laplace-Beltrami
operator

ABSTRACT

In this paper, a study of the approximation of functions from $L \log L(\log \log L)(S^N)$ by Fourier–Laplace series is performed. It is proved that the maximal operator of the Riesz means of the Fourier–Laplace series is bounded, from L_1 to $L \log L(\log \log L)(S^N)$. The result provides a natural and intrinsic characterization of the approximation of the functions by Fourier–Laplace series.

© 2011 Elsevier B.V. All rights reserved.

1. Preliminaries and formulation of the main results

Let S^N be the unit sphere in \mathbb{R}^{N+1} :

$$S^N = \{x \in \mathbb{R}^{N+1} : |x|^2 = x_1^2 + x_2^2 + \dots + x_{N+1}^2 = 1\}.$$

The sphere S^N is naturally equipped with a positive measure $d\sigma(x)$ and with an elliptic second-order differential operator Δ_s , namely the Laplace–Beltrami operator on the sphere. This operator is symmetric and nonnegative, and it can be extended to a nonnegative self-adjoint operator on the space $L_2(S^N)$, where $L_p(S^N)$ denotes the L_p -space associated with the measure $d\sigma(x)$ on the sphere. For the self-adjoint extension of the Laplace–Beltrami operator we use again the same symbol Δ_s , and by $\{\lambda_k\}$, $k=0,1,2,\ldots$, we denote the sequence of the eigenvalues of the Laplace–Beltrami operator Δ_s , which is an increasing sequence of nonnegative eigenvalues $\lambda_k=k(k+N-1), k=0,1,2\ldots$, with finite multiplicities $a_0=1, a_1=N, a_k=\frac{(N+k)!}{N!(k!-2)!}-\frac{(N+k-2)!}{N!(k-2)!}\approx k^{N-1}, k\geq 2$ (and written as such), tending to infinity. We denote by $Y_j^k(x)$ the eigenfunctions of the Laplace–Beltrami operator corresponding to λ_k :

$$\Delta_s Y_i^{(k)} = \lambda_k Y_i^{(k)}, \quad j = 1, 2, \dots, a_k; \ k = 0, 1, 2, \dots$$

E-mail addresses: anvar@eng.upm.edu.my (A.A. Ahmedov), shekeen@eng.upm.edu.my (N. Abdul Aziz).

[☆] This paper was presented at the ICCAM 2009 Congress.

^{*} Corresponding author. Tel.: +60 389466350.

The system of eigenfunctions of the Laplace–Beltrami operator is an orthonormal basis in $L_2(S^N)$ (see [1]). To any measurable function f we assign its spectral expansion:

$$f(x) \sim \sum_{k=0}^{\infty} Y_k(f, x), \tag{1.1}$$

where

$$Y_k(f,x) = \sum_{i=0}^{a_k} Y_j^{(k)}(x) \int_{S^N} f(y) Y_j^{(k)}(y) d\sigma(y), \quad k = 0, 1, 2, \dots.$$

The main purpose of this paper is to approximate the function f by the partial sums of (1.1):

$$E_n f(x) = \sum_{k=0}^n Y_k(f, x).$$
 (1.2)

The Riesz means of the spectral expansions (1.2) can be defined by

$$E_n^{\alpha} f(x) = \int_{S^N} f(y) \Theta^{\alpha}(x, y, n) d\sigma$$
 (1.3)

where

$$\Theta^{\alpha}(x, y, n) = \sum_{k=0}^{n} \left(1 - \frac{\lambda_k}{\lambda_n} \right)^{\alpha} \sum_{i=0}^{a_k} Y_j^{(k)}(x) Y_j^{(k)}(y). \tag{1.4}$$

We recall the standard notation: $\log^+ x = \log x$, if $x \ge 1$; otherwise $\log^+ x = 0$. The class of measurable functions satisfies the condition

$$\int_{S^N} |f(x)| \left(\log^+ |f(x)| \log^+ \log^+ |f(x)| \right) d\sigma(x) < \infty,$$

which we denote by $L \log L(\log \log L)(S^N)$. It is not hard to see that $L \log L(\log \log L)(S^N) \subset L_1(S^N)$. We use the notation $\mu(B)$ for the Lebesgue measure of the set $B \subset S^N$. There is a simple connection between μ and σ :

$$\mu(B) = \int_{B} d\sigma(x).$$

The maximal operator of Riesz means E_{λ}^{s} , which can be defined by

$$E_*^{\alpha} f(x) = \sup_{n > 1} |E_n^{\alpha} f(x)|, \tag{1.5}$$

plays an important role in estimating the error of the approximation.

Let us now proceed to the formulation of the basic results of the paper.

Theorem 1.1. Let $f \in L \log L(\log \log L)(S^N)$; then for maximal operator of Riesz means at the critical index $v = \frac{N-1}{2}$ of the Fourier–Laplace series we have

$$\mu\{|E_*^{\nu}f| > \lambda\} \le \frac{K_1}{\lambda}\mu\{S^N\} + K_2 \frac{|\log \lambda|}{\lambda} \int_{S^N} |f(x)|[1 + (\log^+|f(x)|)\log^+\log^+|f(x)|)d\sigma(x),$$

where K_1 and K_2 do not depend on f and λ .

The proof of Theorem 1.1 is based on the following:

Theorem 1.2. The maximal operator $E_*^{\frac{N-1}{2}}$ is a sublinear operator mapping $L_p(S^N)$, p>1 into weak $L_p(S^N)$ such that

$$\mu\left\{x\in S^N: \left|E_*^{\frac{N-1}{2}}f(x)\right| > \lambda\right\} \le \left(\frac{A}{p-1}\frac{\|f\|_{L_p(S^N)}}{\lambda}\right)^p \tag{1.6}$$

for every $f \in L_p(S^N)$, 1 , with the constant A independent of <math>f and p.

To establish this result we will estimate the maximal operator first in L_1 and L_2 , and subsequently apply the interpolation theorem. The result in L_1 is:

Theorem 1.3. Let $\alpha > \frac{N-1}{2}$; then for all $f \in L_1(S^N)$ we have

$$\mu\{x\in S^N: |E_*^\alpha f(x)|>\lambda\}\leq \frac{c_\alpha}{\alpha-\frac{N-1}{2}}\frac{\|f\|_{L_1(S^N)}}{\lambda},$$

where the constant c_{α} does not depend on f and c_{α} remains bounded as $\alpha \to \frac{N-1}{2}$.

Download English Version:

https://daneshyari.com/en/article/6423058

Download Persian Version:

https://daneshyari.com/article/6423058

<u>Daneshyari.com</u>