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a b s t r a c t

In this paper, the semi-discrete and full discrete biquadratic finite volume element schemes
based on optimal stress points for a class of parabolic problems are presented. Optimal
order error estimates in H1 and L2 norms are derived. In addition, the superconvergences
of numerical gradients at optimal stress points are also discussed. A numerical experiment
confirms some results of theoretical analysis.
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1. Introduction

The finite volume element (FVE) method [1–4], also named the generalized difference method [5–7], covolume
method [8,9] or box method [10], has been becoming increasingly important as a discretization tool in lots of practical
computations. The FVE method possesses not only the simplicity of a finite difference method but also the accuracy of a
finite element method. More importantly, the method preserves local conservation of certain physical quantities. Readers
are referred to [11–14] and references cited therein for some recent developments. By the approximation theory, we know
that the numerical derivatives limited by the degree k of the approximate polynomials can obtain only k-th order accuracy;
in general this estimate cannot be improved even if the solution possesses a higher smoothness. But this fact does not
exclude the possibility that the approximation of derivatives may be of higher order accuracy at some special points, called
optimal stress points. The FVE method based on optimal stress points for solving partial differential equations has been
studied [15–18].

Recently, many researchers have focused on the FVE method in parabolic equations. The linear FVE method has been
studied extensively in [2,8,19–24]. However, there is not a lot of literature on the high order FVE method. As regards the
error estimates of the FVE method for the second order parabolic problems, we can borrow the theories and techniques
of finite element methods to get basically parallel results. But there are certain difficulties requiring special treatment,
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such as the asymmetry of (·, Π∗

h ·); a technique dealing with the asymmetry of (·, Π∗

h ·) is given in [25]. In [26,18] Wang
presented some high order FVE schemes for one-dimensional elliptic and parabolic differential equations. In [27] Yang and
Yuan developed a symmetric biquadratic FVE scheme for nonlinear convection–diffusion problems and obtained an optimal
H1 error estimate. The dual partition ratio of the method is 1:4:1, i.e., each edge of an element in the primal partition Ωh is
partitioned into three segments so that the ratio of these segments is 1:4:1, this dual partition is different from the usually
used ones in [5], where the partition ratio is 1:2:1 instead of 1:4:1. Using four interpolation optimal stress points on every
rectangle element to construct a dual partition related to the primal partition, the authors in [16,17] developed a new class
of biquadratic FVE methods for Poisson equations, and obtained the following optimal order L2 error estimate by taking the
advantage of optimal stress points:

‖u − uh‖0 ≤ Ch3
‖u‖4.

However, many numerical experiments indicate that both convergence rates of the biquadratic FVE methods carried out
from the former two dual partitions are only O(h2) in the L2 norm for elliptic equations, which are not optimal. In this paper,
wewill apply the same dual partition in [16,17] to establish some new FVE schemes for second order parabolic problems.We
prove that these schemes not only possess optimal error estimates inH1 and L2 norms but also obtain the superconvergences
of numerical gradients at optimal stress points.

The remainder of this paper is organized as follows. In Section 2, we introduce some necessary notations, and formulate
the semi-discrete and full discrete FVE schemes. In Section 3, some auxiliary lemmas in order to analyze these schemes are
proved. The semi-discrete and Crank–Nicolson FVE schemes are analyzed in Sections 4 and 5, respectively, including optimal
order error estimates in theH1 norm, L2 norm and the superconvergences of numerical gradients at optimal stress points. In
Section 6, a numerical experiment on the performance of the threemethods, based on the different dual partitions, confirms
that the new method improves the convergence rate of the other two methods.

Throughout this paper, the letter C denotes a generic positive constant independent of the mesh parameter and the time
step size, and can have different values in different places.

2. The finite volume element methods

We consider the following second order parabolic problem:
∂u
∂t

− ∇ · (a(x)∇u) = f (x, t), (x, t) ∈ Ω × (0, T ],

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ],
u(x, 0) = u0(x), x ∈ Ω

(2.1)

where Ω = (xL, xR) × (yL, yR), x = (x, y), a(x) is a positive real-valued function and f (x, t): Ω × [0, T ] → R. The initial
function u0 is assumed to be smooth enough to insure the problem (2.1) has a unique solution in some Sobolev space.

For simplicity, we denote ut =
∂u
∂t . The weak formulation associated with (2.1) is: Find u = u(·, t) ∈ H1

0 (Ω) (0 < t ≤ T )
such that

(ut , v) + a(u, v) = (f , v), ∀v ∈ H1
0 (Ω), 0 < t ≤ T ,

u(x, 0) = u0(x), x ∈ Ω,
(2.2)

where (·, ·) denotes the inner product in L2(Ω) and a(·, ·) : H1
0 (Ω) × H1

0 (Ω) → R is a bilinear form defined by

a(u, v) =

∫
Ω

a∇u · ∇vdxdy, ∀u, v ∈ H1
0 (Ω). (2.3)

Definition 2.1 (Cf. [5]). Point x0 is called an optimal stress point if there exists a q ∈ [1, ∞] such that

|▽(u − Πhu)(x0)| ≤ Chk+1− N
q ‖u‖k+2,q,E, ∀u ∈ W k+2,q(E), (2.4)

where E denotes the union of all the elements containing x0, ▽v(x0) the arithmetic mean of the values ▽v(x0) at every
element in E,N the dimension of the region, and C a constant independent of the grid Ωh and the solution u.

In [28], we have clarified that the set of the interpolation optimal stress points for a one-dimensional Lagrange quadratic
finite element is

N2 = FN̂2,

where F is the invertible affine mapping from the reference element K̂ = [−1, 1] to the finite element K , and N̂2 is the set
of the interpolation optimal stress points on [−1, 1]:

N̂2 =


−

1
√
3
,

1
√
3


.
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