
Journal of Computational and Applied Mathematics 236 (2011) 1531–1542

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Block Arnoldi-based methods for large scale discrete-time algebraic
Riccati equations

A. Bouhamidi a, M. Heyouni b, K. Jbilou a,∗

a Univ. Lille- Nord de France, ULCO, LMPA, 50 rue F. Buisson BP699, F-62228 Calais Cedex, France
b ENSAH, Ecole Nationale des Sciences Appliquées d’Al-Hoceima, Université Mohammed Premier, Oujda, Maroc

a r t i c l e i n f o

Article history:
Received 6 April 2011
Received in revised form 21 June 2011

Keywords:
Block Arnoldi
Block Krylov
Discrete Riccati equations
Extended
Low rank
Newton

a b s t r a c t

In the present paper, we present block Arnoldi-based methods for the computation of low
rank approximate solutions of large discrete-time algebraic Riccati equations (DARE). The
proposedmethods are projectionmethods onto block or extended block Krylov subspaces.
We give new upper bounds for the norm of the error obtained by applying these block
Arnoldi-based processes. We also introduce the Newton method combined with the block
Arnoldi algorithm and present some numerical experiments with comparisons between
these methods.
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1. Introduction

Algebraic Riccati equations (discrete-time or continuous-time) play a fundamental role in many areas such as control,
filter design theory, model reduction problems, differential equations and robust control problems [1–3]. They arise in
linear-quadratic regulator problems, H∞ or H2-control, model reduction problems and many others; see, e.g., [1,2] and the
references therein. For historical developments, applications and importance of algebraic Riccati equations, we also refer
to [4,5] and the references therein.

In this paper we propose numerical methods for large discrete-time algebraic Riccati equations (DARE) of the form

X = ATXA − ATXB(R + BTXB)−1BTXA + CTC, (1)

where A, X ∈ Rn×n, B ∈ Rn×s, C ∈ Rs×n and R ∈ Rs×s with R = RT > 0 and s ≪ n.
Using the following relations

(I + U)−1
= I − U(I + U)−1 (2)

and

V (I + UV )−1
= (I + VU)−1V , (3)

we can show (see [6]) that the matrix equation (1), could also be written as

X − ATX(I + GX)−1A − CTC = 0, (4)
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where G = B R−1 BT . Eq. (1) arises from the discrete-time linear quadratic problem

min
u

1
2

∞−
k=0

(yTkyk + uT
kRuk)

subject to the constraints

xk+1 = Axk + Buk,

yk = Cxk, k = 0, 1, . . .

where xk is the state vector of dimension n, uk is a control vector of Rs, and yk is the output vector of length s.
The pair (A, B) is said to be d-stabilizable if there exists a matrix L such that A − BL is d-stable which means that all its

eigenvalues are in the open unit disk. The pair (A, C) is said to be detectable if the pair (AT , CT ) is d-stabilizable. Throughout
this paper, we assume that these conditions are satisfied. It follows that in such a case the optimal feedback law uk is given
by

uk = −(R + BTXdB)−1 BTXdA xk; k = 0, 1, . . .

where Xd is the unique d-stabilizing positive semi-definite solution of Eq. (1), (the eigenvalues of the matrix A − B(R +

BTXdB)−1BTXdA are in the open unit disk); see [2] for more details.
During the last decades, many numerical methods for solving the DARE (1) with small and dense matrices have been

developed. The standard computationalmethods are based on the Schur and structure-preserving Schurmethods [7–9,3,10],
matrix sign function methods [7], Newton-type methods [11–14,2] and the symplectic Lanczos method [15].

Projection methods, on block Krylov subspaces, using the block Arnoldi process, and on matrix Krylov subspaces, using
the global Arnoldi process, have also been applied to compute low rank approximate solutions to large and sparse algebraic
Riccati equations [16–18]. However, no convergence have been givenwhen using Arnoldi-typemethods for solving discrete-
time algebraic Riccati equations.

In this paper, we present block projection methods that allow us to compute low rank approximations to the stabilizing
solution of (1). We project the initial problem onto a block or onto an extended block Krylov subspace, generated by the pair
(AT , CT ) andwe obtain a low dimensional DARE that is solved by a standard algorithm such as the Schurmethod [8].We give
new theoretical results such as upper bounds for the norm of the error. We also introduce the Newton method associated
with the block Arnoldi algorithm used for solving, at each Newton’s iteration, the obtained Stein matrix equation.

The paper is organized as follows. In Section 2, we review the block Arnoldi algorithmwith some properties. In Section 3,
we apply the block Arnoldi method to extract low rank approximate solutions to the DARE (1). The main theoretical results
are given in Section 4 where some new bounds for the norm of the error are derived. In Section 5, wewill see how to use the
Newton–Hewer method in combination with the block Arnoldi algorithm to solve (1). Section 5 is devoted to the extended
block Arnoldi for the DARE (1). In the last section, we give some numerical experiments and comparisons between the
mentioned three methods.

Throughout this paper, we use the following notations: The 2-norm and the F-norm of matrices will be denoted by ‖.‖2
and ‖.‖ respectively. The scalar product associated with the Frobenius norm is defined by ⟨Z1, Z2⟩ = trace(ZT

1 Z2). Finally, Ir
and Or×l will denote the identity matrix of size r × r and the zero matrix of size r × l, respectively.

2. The block Arnoldi algorithm

We first recall the block Arnoldi process applied to the pair (F ,G) where F ∈ Rn×n and G ∈ Rn×s. The block projection
subspace Km(F ,G) is given by

Km(F ,G) = Range([G, F G, F 2 G, . . . , Fm−1 G]).

Note that the subspace Km(F ,G) is a simple sum of s Krylov subspaces

Km(F ,G) =
s
+
i=1

Km(F ,G(i)),

where Km(F ,G(i)) is the Krylov subspace generated by F and the i-th column G(i) of the n × s matrix G. The block Arnoldi
algorithm is summarized as (see for example [16,17])

Algorithm 1 The block Arnoldi algorithm

• Compute the QR factorization G = V1R1,
• For j = 1, . . . ,m do

◦ Wj = F Vj,
◦ for i = 1, 2, . . . , j do

. Hi,j = V T
i Wj,

. Wj = Wj − Vj Hi,j,
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