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We present a discrepancy-like stopping criterium for iterative regularization methods for 
the solution of linear discrete ill-posed problems. The presented criterium terminates 
the iterations of the iterative method when the residual norm of the computed solution 
becomes less or equal to the residual norm of a regularized Truncated Singular Value 
Decomposition (TSVD) solution. We present two algorithms for the automatic computation 
of the TSVD residual norm using the Discrete Picard Condition. The first algorithm uses the 
SVD coefficients while the second one uses the Fourier coefficients. In this work, we mainly 
focus on the Conjugate Gradient Least Squares method, but the proposed criterium can be 
used for terminating the iterations of any iterative regularization method. Many numerical 
tests on some selected one dimensional and image deblurring problems are presented and 
the results are compared with those obtained by state-of-the-art parameter selection rules. 
The numerical results show the efficiency and robustness of the proposed criterium.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this work we consider least squares problems

min
x

‖Ax − b‖2, A ∈R
m×n, x ∈R

n, b ∈R
m, m ≥ n (1)

where the coefficient matrix A is ill-conditioned and derives from the discretization of a continuous ill-posed operator. The 
data b is assumed to be corrupted by measurement errors, which we will refer to as noise. In particular, we suppose that 
b = bexact + e, where bexact is the unknown noise-free right-hand side vector and e is a zero-mean white noise vector. In 
(1) and in the sequel, ‖ · ‖ denotes the Euclidean norm.

Discrete ill-posed problems of the form (1) arise, for example, from the discretization of Fredholm integral equations of 
the first kind that are commonly used to model instrument distortions. They are often encountered in large-scale image 
deblurring applications, where A is typically the matrix representation of a convolution operator. Under periodic boundary 
conditions, A is block circulant with circulant blocks (BCCB) and matrix–vector products can be performed using FFTs [27]. 
This type of observation model may describe, for example, motion blur, atmospheric turbulence blur and out-of-focus blur.

Background Because of the ill-conditioning of A, regularization techniques are necessary in order to reduce the sensitivity 
of the solution of (1) to the noise in b. Iterative regularization methods are some methods of choice when the dimensions 
of problem (1) are large and A cannot be explicitly stored, but matrix–vector products involving A can be easily computed. 
Iterative methods have a semiconvergence behavior when applied to ill-posed problems and they can be used as regular-
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ization methods if suitably stopped before the noise enters the computed solution. The stopping iteration plays the role of 
the regularization parameter, providing a fair balance between data fidelity and solution smoothness.

For example, in image restoration problems, Krylov subspace methods are very important, as pointed out in [26] where 
an insightful analysis is performed. Popular iterative regularization methods are, for example, the Conjugate Gradient 
Least Squares (CGLS), the Preconditioned CGLS (PCGLS), the MINimal RESidual (MINRES), the Generalized Minimal Residual
(GMRES) and the Range Restricted GMRES (RRGMRES) methods [16,18,31,43,10,35,32]. When nonnegativity constraints are 
added to the least squares problem (1), the Scaled Gradient Projection method (SGP), the Iterative Space Reconstruction 
Algorithm (ISRA), the Projected Landweber (PL) method or the Projected Newton (PN) method may be used as iterative 
regularization methods [4,11,13,5,38,39].

A wise choice of the regularization parameter is a vital issue in applying iterative regularization methods to practical 
applications, since the quality of the regularized solution crucially depends on this choice. The recent literature on ill-posed 
inverse problems shows that efficient regularization parameter selection techniques are under active research.

The famous discrepancy principle [41] is probably the most widely used parameter choice strategy in the context of regu-
larization. It is an a-posteriori criterion choosing the regularization parameter as a function of the data and the noise norm 
which must be known. Unfortunately, this information may not be available in real-world applications and methods not 
requiring an estimate of the noise norm are actually desirable. The recent literature shows an increasing interest in heuristic
(or noise-level-free) parameter choice strategies, even if the well-known Bakushinsky veto [1] states that, in Hilbert spaces, 
all heuristic parameter choice rules, which do not make use of the knowledge about the exact noise level, will never con-
verge in the worst-case scenario analysis. Nevertheless, heuristic parameter selection techniques are used quite frequently 
in practical applications, often giving good results [46,3]. The L-curve method [40,23] and the Generalized Cross Validation 
method [14] are likely the most popular heuristic parameter selection strategies; they have been deeply investigated by sev-
eral authors [9,34,17,53]. Some variants of the L-curve criterion have been described, e.g. the residual L-curve criterion [47,
46] and the Reginska’s method [45]. A number of other choice rules have been proposed in the literature, e.g. the Hanke–
Raus rule [19] and the quasi-optimality criterion [52,51] which have recently received an increasing interest [2,37,36,42]. 
Other parameter choice techniques, called extrapolation methods [6,7], are based on suitable a posteriori estimates of the 
error norm in the solution of (1) while another method obtains estimates of the noise level from the Golub–Kahan iterative 
bidiagonalization [29] (this last method, referred to as quadrature method, is specific for LSQR). Several minimization rules 
for the selection of the regularization parameter for many iterative regularization methods as the Landweber method and 
the CGLS method are given in [15], both in case of known and unknown noise norm. A detailed and careful comparison of 
many parameter choice rules is performed in [3,46].

Other criteria for choosing the parameter of iterative regularization methods are based on the estimation of the resid-
ual norm of a regularized solution. A recent and innovative approach is illustrated in [50,49,48] where several diagnostic 
tools, which are statistically motivated, are presented to evaluate the suitability of a candidate regularization parameter for 
the Truncated Singular Value Decomposition (TSVD) and Tikhonov methods. In [50], an automatic procedure, based on the 
aforementioned diagnostic tools, is presented to select the regularization parameter so that the residual of the correspond-
ing solution resembles white noise. In [25], the authors develop the so-called Normalized Cumulative Periodogram (NCP) 
method, an automatic procedure that chooses the regularization parameter making the residual as close as possible to white 
noise. The NCP method can be applied to direct regularization (TSVD and Tikhonov regularization) as well as iterative reg-
ularization and requires to calculate the NCP of the residual vector for each choice of the regularization parameter, starting 
from large values and stopping at the first parameter whose associated residual satisfies the Kolmogorov–Smirnov test. The 
methods developed in [50,49] and [25] use the Fourier coefficients to determine the regularization parameter since they all 
use the periodogram and the cumulative periodogram to judge if the residual resembles white noise.

Finally, even if the Singular Value Decomposition and the Discrete Picard Condition (DPC) [20,23] are well-known tools 
for the analysis of ill-posed inverse problems, to the best of the authors’ knowledge, very little work has been done in 
the literature on the development of suitable parameter choice techniques using the DPC. Zama [54] has proposed a fast 
and efficient method based on the SVD coefficients for the computation of the regularization parameter of the TSVD and 
Tikhonov methods. Jones [33] has developed a method for automatically estimating the noise norm via the DPC and thus 
the regularization parameter for Tikhonov method.

Contribution In this work, we focus on iterative regularization methods such as, for example, Krylov subspace methods and 
other methods exhibiting a semiconvergence behavior [5,23]. In the sequel, therefore, the general term iterative method will 
refer to a method with the semiconvergence property.

The main purpose of this work is to propose a criterion for the selection of the stopping iteration of iterative methods. 
Our criterion is based on an estimate of the residual norm of a suitable regularized solution performed through the TSVD 
solution of (1). We present the criterion from an algorithmic point of view and we show that it is efficient on large size 
problems.

As pointed out in [25], almost all the parameter choice methods proposed in the literature involve some information 
about the norm of the residual vector of a regularized solution close to the exact one. For example, the famous discrepancy 
principle chooses the regularization parameter so that the residual norm is as close as possible to the noise norm, i.e. to the 
residual norm of the exact solution. In this work, we propose to choose the regularization parameter of iterative methods 
so that the residual norm of the corresponding solution is as close as possible to the residual norm of a suitable regularized 
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