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Sommerfeld integrals relate a spherical wave from a point source to a convolution set of 
plane and cylindrical waves. This relation does not have analytical solutions but it submits 
to a solution by numerical integration. Among others, it is significant for theoretical studies 
of many optical and radiation phenomena involving surfaces. This approach is preferred 
over discretized computational models of the surface because of the many orders of 
increased computations involved in the latter. One of the most widely used and accurate 
methods to compute these solutions is the numerical integration of the Sommerfeld 
integrand over a complex contour. We have analyzed the numerical advantages offered 
by this method, and have justified the optimality of the preferred contour of integration 
and the choice of two eigenfunctions used. In addition to this, we have also analyzed 
four other approximate methods to compute the Sommerfeld integral and have identified 
their regions of validity, and numerical advantages, if any. These include the high relative 
permittivity approximation, the short distance approximation, the exact image theory and 
Fourier expansion of the reflection coefficient. We also finally compare these five methods 
in terms of their computational cost.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The problem of modelling radiating antennas near a plane boundary such as the earth–air interface is of considerable 
practical importance in the fields of nano optics, oceanography, geophysical exploration, and submarine communication and 
detection. The radiation characteristics of an antenna can be substantially affected by the presence of a lossy ground with 
finite conductivity [4], especially in the near field of the antenna. Applications in nano optics also require the computation 
of interactions between a large number of dipole sources and substrates, thus requiring a repetitive use of this method 
numerous times to obtain a final solution of the problem [10,11,17,24,27,25,6,12,28]. Due to the vastly diminished scales 
involved in nano optics, the interaction between the dipole sources and the substrate is very significant [26,8,23].

The classic formulation of this problem by Sommerfeld [22,20,21] assumes a homogeneous lossy half-space with finite 
conductivity (say, the earth), and an infinitesimal vertical point dipole embedded in the free space (say, air) above it. 
Maxwell’s equations are applied subject to the half-space boundary conditions, and the solutions are obtained in the form 
of an inverse Fourier–Bessel integral. This integral modelling the interaction of the dipole with the surface is known as 
the Sommerfeld integral. Since the problem has cylindrical symmetry, it is convenient to express the solution in cylindrical 
coordinates as an integral of the eigenfunctions of the cylindrical Helmholtz operator. These eigenfunctions are in terms 
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of the zeroth order Bessel function of the first kind for the ρ direction, and in terms of a complex exponential for the z
direction. Because of the azimuthal symmetry in angle φ, the solutions are independent of φ.

The Sommerfeld integral has no closed form analytic solution, but there exist a few numerical methods to compute the 
solution. Since the integrand of the Sommerfeld integrand is oscillatory and has branch points along with other singularities, 
traditional numerical integration schemes converge poorly if the path of integration is not optimally chosen. Approximate 
analytic expressions can also be obtained when certain constraints are applied on the parameters. The objective of this 
work is to study the efficiency of the methods proposed so far, to evaluate the Sommerfeld integral in its amenable or ap-
proximated forms. Note that for more general scattering problems with arbitrarily shaped scatterers, other efficient integral 
equation solvers exist [3]. Similarly, these methods specific to this integral are expected to converge fast even if advanced 
numerical integration schemes designed for various types of singularities are not used. One method – exact image theory 
– is similar to integration schemes proposed for integrating functions with certain types of singularities [2,9,7,1]. The Som-
merfeld integral based approach can in principle be combined with other integral equation solvers for problems involving 
an infinite surface and other scatterers [19].

The three spatial components of the vector potential for a z oriented oscillating electric point dipole in the near field of 
a surface are given in (1a) and (1b). The first two terms on the right hand side of (1a) represent the vector potential due to 
the primary dipole source and the image respectively. The third integral term is known as the Sommerfeld integral.

Az = eikR

R
+ eikR ′

R ′ − 2

∞∫
0

J0(kρρ)e−kz(z+h) kzs

εkz + kzs

kρ

kz
dkρ (1a)

Aρ = Aφ = 0 (1b)

kz =
√

k2
ρ − k2 (1c)

kzs =
√

k2
ρ − εk2 (1d)

R =
√

ρ2 + (z − h)2 (1e)

R ′ =
√

ρ2 + (z + h)2 (1f)

where ε is the relative permittivity of the surface, k is the wave number in free space, kρ and kz are the ρ and z components 
respectively of the wave number in free space, kzs is the z component of the wave number under the surface, ρ and z are 
the coordinates of the observation point, and J0 is the zeroth order Bessel function of the first kind.

Note the branch cuts and singularities of this integrand are shown in Fig. 1. We describe five methods to evaluate this 
integral; their regions of validity in terms of the permittivity of the half-space and the ρ/z ratios. Finally, in Section 7, we 
comment on the approximate computational costs involved in each of these methods.

2. Complex contour integration

For analytical integration, as a consequence of Cauchy’s residue theorem, all different complex contours are equivalent 
provided the closed loop formed by the different contours of integration do not enclose any poles or singularities of the 
integrand and the contours do not intersect any branch cut of the integrand. However, numerical quadrature schemes would 
encounter oscillatory or non-oscillatory integrands depending on the contour chosen, and this can significantly affect the 
rate of convergence and accuracy of the numerical result.

2.1. Contour integration with Bessel functions

We start by ascertaining the location of the poles, branch points and branch cuts of the Sommerfeld integrand. The 
integrand has a pole p, given by (2), corresponding to εkz + kzs = 0.
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It also has branch points at kρ = ±k and kρ = ±k
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ε due to 
√

k2
ρ − k2 and 

√
k2
ρ − εk2 respectively. Choosing the conven-

tional principal value of the square root function, the corresponding branch cuts are as given by (3). The detailed derivations 
which result in these branch cuts are shown in Appendix B.
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