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We develop and analyze a new residual-based a posteriori error estimator for the 
discontinuous Galerkin (DG) method for nonlinear ordinary differential equations (ODEs). 
The a posteriori DG error estimator under investigation is computationally simple, efficient, 
and asymptotically exact. It is obtained by solving a local residual problem with no 
boundary condition on each element. We first prove that the DG solution exhibits an 
optimal O(hp+1) convergence rate in the L2-norm when p-degree piecewise polynomials 
with p ≥ 1 are used. We further prove that the DG solution is O(h2p+1) superconvergent 
at the downwind points. We use these results to prove that the p-degree DG solution is 
O(hp+2) super close to a particular projection of the exact solution. This superconvergence 
result allows us to show that the true error can be divided into a significant part and a 
less significant part. The significant part of the discretization error for the DG solution is 
proportional to the (p + 1)-degree right Radau polynomial and the less significant part 
converges at O(hp+2) rate in the L2-norm. Numerical experiments demonstrate that the 
theoretical rates are optimal. Based on the global superconvergent approximations, we 
construct asymptotically exact a posteriori error estimates and prove that they converge 
to the true errors in the L2-norm under mesh refinement. The order of convergence is 
proved to be p + 2. Finally, we prove that the global effectivity index in the L2-norm 
converges to unity at O(h) rate. Several numerical examples are provided to illustrate 
the global superconvergence results and the convergence of the proposed estimator under 
mesh refinement. A local adaptive procedure that makes use of our local a posteriori error 
estimate is also presented.
© 2016 The Author. Published by Elsevier B.V. on behalf of IMACS. This is an open access 

article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this paper, we investigate the superconvergence properties and analyze a residual-based a posteriori error estimator 
of the discretization errors for the discontinuous Galerkin (DG) method applied to the following first-order initial-value 
problem (IVP) of nonlinear ordinary differential equation (ODE) on [0, T ]:

d�u
dt

= �f (t, �u), t ∈ [0, T ], �u(0) = �u0, (1.1)

where �u : [0, T ] → R
n , �u0 ∈ R

n , and �f : [0, T ] ×R
n → R

n . In our analysis, we assume that the solution exists and is unique. 
According to the ODE theory, the condition �f ∈ C1([0, T ] ×R

n) is sufficient to guarantee the existence and uniqueness of the 
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solution to (1.1). We note that an IVP for higher-order ODE may be solved using the DG method for solving first-order system 
of the form (1.1) since one can transform higher-order equations into several coupled first-order equations by introducing 
new unknowns.

ODEs solvers are important tools for the computational solutions of higher-order ODEs and many partial differential equa-
tions (PDEs). For instance, the application of the standard finite element method or DG in space to solve time-dependent 
PDEs generates a coupled system of ODEs. Once the spatial discretization is constructed, one would then need to employ a 
suitable ODE solver for the time discretization. If the mesh size in space becomes small then often the ODE system becomes 
more and more stiff. It is very well-known that explicit schemes suffer from extremely small time step restriction for sta-
bility. Therefore, explicit time discretization techniques are not a suitable choice and implicit, at least A-stable methods are 
desirable. There are many A-stable higher-order time discretization schemes designed for different purposes in the litera-
ture, such as the implicit Runge–Kutta (IRK) methods and DG methods with higher polynomial order. Despite the popularity 
of high-order IRK methods for integrating systems of ODEs, we choose the DG method because of the following advantages: 
(i) it is A-stable, (ii) it is locally conservative, and (iii) it exhibits strong superconvergence that can be used to estimate 
the discretization error. Furthermore, it is very natural to construct high-order DG methods and, for future developments, 
we can apply the well-known adaptive DG techniques for changing the polynomial degree as well as the length of the 
time intervals. Finally, if we use space–time DG methods for the discretization of evolution PDEs, we would have a uniform 
variational approach in space and time which may provide a useful tool for the future analysis of the fully discrete problem 
and the construction of simultaneous space–time adaptive methods.

The DG method considered here is a class of finite element methods using completely discontinuous piecewise polyno-
mials for the numerical solution and the test functions. DG method combines many attractive features of the classical finite 
element and finite volume methods. It is a powerful tool for approximating some differential equations which model prob-
lems in physics, especially in fluid dynamics or electrodynamics. Comparing with the standard finite element method, the 
DG method has a compact formulation, i.e., the solution within each element is weakly connected to neighboring elements. 
DG method was initially introduced by Reed and Hill in 1973 as a technique to solve neutron transport problems [36]. In 
1974, Lesaint and Raviart [33] presented the first numerical analysis of the method for a linear advection equation. Since 
then, DG methods have been used to solve ODEs [6,19,32,33], hyperbolic [15–18,23,24,35,29,31,20,45,34,2,3,12,5] and dif-
fusion and convection–diffusion [13,14,43,25] PDEs. The proceedings of Cockburn et al. [22] and Shu [39] contain a more 
complete and current survey of the DG method and its applications.

In recent years, the study of superconvergence and a posteriori error estimates of DG methods has been an active research 
field in numerical analysis, see the monographs by Verfürth [41], Wahlbin [42], and Babuška and Strouboulis [9]. A knowl-
edge of superconvergence properties can be used to (i) construct simple and asymptotically exact a posteriori estimates of 
discretization errors and (ii) help detect discontinuities to find elements needing limiting, stabilization and/or refinement. 
A posteriori error estimates play an essential role in assessing the reliability of numerical solutions and in developing efficient 
adaptive algorithms. Typically, a posteriori error estimators employ the known numerical solution to derive estimates of the 
actual solution errors. They are also used to steer adaptive schemes where either the mesh is locally refined (h-refinement) 
or the polynomial degree is raised (p-refinement). For an introduction to the subject of a posteriori error estimation see 
the monograph of Ainsworth and Oden [8]. Superconvergence properties for finite element and DG methods for ordinary 
differential equations have been studied in [6,7,27,33,44,40]. The first superconvergence result for standard DG solutions of 
hyperbolic PDEs appeared in Adjerid et al. [6]. The authors presented numerical results that show that standard DG solu-
tions of one-dimensional linear and nonlinear hyperbolic problems using p-degree polynomial approximations exhibit an 
O(hp+2) superconvergence rate at the roots of (p +1)-degree Radau polynomial. They further established a strong O(h2p+1)

superconvergence at the downwind end of every element.
Related theoretical results in the literature including superconvergence results and error estimates of the DG meth-

ods for ODEs are given in [33,27,26,32,30]. In particular, Lesaint and Raviart [33] studied the numerical solution of the 
initial value problem (1.1) by a DG method. Their scheme is equivalent to some implicit Runge–Kutta method, strongly 
A-stable one-step method. Delfour et al. [27] analyzed a class of Galerkin methods derived from discontinuous piecewise 
polynomial spaces. These schemes generalize the method proposed by Lesaint and Raviart [33]. In their DG method, the 
approximated solution at t j , a point of discontinuity in the approximating polynomial uh , is taken as an average across 
the jump: α juh(t−

j ) + (1 − α j)uh(t+
j ). The cases α j = 0, 0.5, 1 correspond, respectively, to Euler’s explicit, improved, and 

implicit schemes. Later, Delfour and Dubeau [26] studied the approximation of the solution of the nonlinear ODEs by dis-
continuous piecewise polynomials. They introduced a more general theory of one-step (such as implicit Runge–Kutta and 
Crank–Nicholson schemes), hybrid and multistep methods (such as Adams–Bashforth and Adams–Moulton schemes). Also, 
we mention the work of Johnson [32] in which a priori error estimates for a class of implicit one-step methods generated 
by the DG time discretization are proven. Estep [30] analyzed a finite element method for the integration of IVPs in ODEs. 
The author obtained quasi-optimal a priori and a posterior error bounds. They used these results to construct a rigorous and 
robust theory of global error control. The author also derived an asymptotic error estimate that is used in a discussion of the 
behavior of the error. Recently, Deng and Xiong [28] introduced and analyzed a DG finite element method with interpolated 
coefficients for an IVP of nonlinear ODE. They used the finite element projection for an auxiliary linear problem as compar-
ison function and proved an optimal superconvergence results. Subsequently, Adjerid and Baccouch [4,11,10] investigated 
the global convergence of the implicit residual-based a posteriori error estimates of Adjerid et al. [6]. They proved that, for 
smooth solutions, these a posteriori error estimates at a fixed time t converge to the true spatial errors in the L2-norm under 
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