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The stability and convergence of a second-order fully discretized projection method for the 
incompressible Navier–Stokes equations is studied. In order to update the pressure field 
faster, modified fully discretized projection methods are proposed. It results in a nearly 
second-order method. This method sacrifices a little of accuracy, but it requires much 
less computations at each time step. It is very appropriate for actual computations. The 
comparison with other methods for the driven-cavity problem is presented.

© 2015 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

To solve the incompressible Navier–Stokes equations, the projection method (or fractional step method) was originally 
introduced and studied independently by [3,4] and [24,25]. It has had tremendous applications, see e.g., [26,14,28,6], and 
the references therein, for the theoretical and numerical aspects. Despite many advantages and extensive uses in the past by 
numerous researchers, the projection method has a few major drawbacks for numerical computations. In general, the orig-
inal method is only first-order accurate in time. It also needs the supplementary boundary conditions for the intermediate 
level velocity field and the pressure, which are not supplied in the original equations.

In order to improve the accuracy, modified second-order projection methods were introduced. At least three types of 
higher order projection methods were proposed. Namely, a method via improved intermediate velocity boundary conditions 
[14,7,10], a method via pressure-correction [27,1,8,22] and a method via improved pressure boundary condition [18,13,21,2]. 
However, all these methods still need supplementary boundary conditions. For a survey of these methods we refer the 
reader to, e.g., [16,9].

A fully discretized projection method was studied in [11,12] on the staggered grid. The idea was originated in the 
block LU decomposition, see [19]. This led to a whole class of methods (first-order, second-order and even higher order 
methods). Depending on how the Navier–Stokes equations are discretized, it is possible to construct higher order methods. 
However, for all methods with order of accuracy higher than 2 we need to solve a linear system and an inverse system. The 
computations are very costly.

In this article, we investigate the stability and convergence of the second-order fully discretized projection method 
proposed in [11,12]. With the help of approximation of inverse matrix, we proposed the modified fully discretized projection 
methods. Those methods have the accuracies between one and two. In order to have the accuracy closer to two, more 
iterations are needed.
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This article is organized as follows. In Section 2, we recall the Navier–Stokes equations and the boundary conditions. 
The space discretization is listed in Section 3. The fully discretized projection method is shown in Section 4. In Section 5, 
we present fully discretized projection methods. In Section 6 stability and convergence of second-order fully discretized 
projection method is studied. The modified fully discretized projection methods are shown in Section 7. Section 8 contains 
the numerical simulations of the driven-cavity problem and comparison with other results. We discuss the future work in 
Section 9.

2. Incompressible Navier–Stokes equations

We will consider the non-dimensionalized unsteady incompressible Navier–Stokes equations in space dimension two or 
three on a given regular domain �, namely

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
+ (u · ∇)u − 1

Re
�u + ∇p = f ,

∇ · u = 0,

u|t=0 = u0,

(2.1)

with the boundary conditions on ∂�:

ηu + (1 − η)
∂u

∂
−→n

= 0.

Here Re is the Reynolds number; the parameter η has the limit values of 0 for the free-slip (no stress) condition (Neumann) 
and 1 for the no-slip condition (Dirichlet). In general, we will not specify η, but keep in mind that 0 ≤ η ≤ 1.

Actually, the boundary conditions do not affect the scheme as far as stability and convergence are concerned, but they are 
of course important for the numerical stability conditions. For the stability and convergence, what we need is the condition 
that guarantees the existence of the solution for the original equations.

3. Space discretization

Two families of finite-dimensional Hilbert spaces Xh and Vh are given, which depend on a parameter h ∈ Rd+ (d = 2, 3). 
For finite differences, h is the mesh, i.e. h = {h1, h2} = {�x, �y} in space dimension two and h = {h1, h2, h3} = {�x, �y, �z}
in space dimension three.

Two scalar products ((·, ·))h and (·, ·)h with corresponding norms || · ||h and | · |h are defined on each Vh . Since Vh is a 
finite-dimensional space the two norms || · ||h and | · |h are equivalent. We assume that they are related as follows

|uh|h ≤ c1||uh||h, (3.1)

||uh||h ≤ S(h)|uh|h, ∀uh ∈ Vh, (3.2)

where c1 is independent of h and S(h) depends on h.
When convergence will be studied, we will be interested in the passage to the limit h → 0. The spaces Vh with scalar 

product ((·, ·))h will approximate in some sense the space V , while the spaces Vh with scalar product (·, ·)h will approxi-
mate the space H . We assume the following

S(h) → ∞, as h → 0

A trilinear operator bh is defined on Vh × Vh × Vh as follows:

bh(uh, vh, wh) = ((uh · ∇)vh, wh), ∀uh, vh, wh ∈ Vh,

and we have the properties:

|bh(uh, vh, wh)| ≤ c2|uh|
1
2
h ||uh||

1
2
h ||vh||h|wh|

1
2
h ||wh||

1
2
h , ∀uh, vh, wh ∈ Vh, (3.3)

in space dimension two, and

|bh(uh, vh, wh)| ≤ c2|uh|
1
4
h ||uh||

3
4
h ||vh||h|wh|

1
4
h ||wh||

3
4
h , ∀uh, vh, wh ∈ Vh, (3.4)

in space dimension three. The constant c2 in (3.3) and (3.4) is independent of h.
We also assume the skewness property:

bh(uh, vh, vh) = 0, ∀uh, vh ∈ Vh, (3.5)

which implies
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