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An efficient finite element method to take account of the nonlinearity of the magnetic
materials when analyzing three-dimensional eddy current problems is presented in this
paper. The problem is formulated in terms of vector and scalar potentials approximated by
edge and node based finite element basis functions. The application of Galerkin techniques
leads to a large, nonlinear system of ordinary differential equations in the time domain.
The excitations are assumed to be time-periodic and the steady-state periodic solution is of
interest only. This is represented either in the frequency domain as a finite Fourier series
or in the time domain as a set of discrete time values within one period for each finite
element degree of freedom. The former approach is the (continuous) harmonic balance
method and, in the latter one, discrete Fourier transformation will be shown to lead to a
discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous
and discrete, are coupled to each other.
The harmonics would be decoupled if the problem were linear, therefore, a special
nonlinear iteration technique, the fixed-point method is used to linearize the equations
by selecting a time-independent permeability distribution, the so-called fixed-point
permeability in each nonlinear iteration step. This leads to uncoupled harmonics within
these steps.
As industrial applications, analyses of large power transformers are presented. The first
example is the computation of the electromagnetic field of a single-phase transformer
in the time domain with the results compared to those obtained by traditional time-
stepping techniques. In the second application, an advanced model of the same transformer
is analyzed in the frequency domain by the harmonic balance method with the effect of
the presence of higher harmonics on the losses investigated. Finally a third example tackles
the case of direct current (DC) bias in the coils of a single-phase transformer.

© 2013 The Authors. Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

The most straightforward method of solving nonlinear electromagnetic field problems in the time domain by the method
of finite elements (FEM) is using time-stepping techniques. This requires the solution of a large nonlinear equation system
at each time step and is, therefore, very time consuming, especially if a three-dimensional problem is being treated. If the
excitations are non-periodic or if, in case of periodic excitations, the transient solution is required, one cannot avoid time
stepping. In many cases however, the excitations of the problem are periodic, and it is only the steady-state periodic solution
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which is needed. Then, it is wasteful to step through several periods to achieve this by the “brute force” method [1] of time
stepping.

A successful method to avoid stepping through several periods in such a case is the time-periodic finite element method
introduced in [12]. To accelerate the originally slow convergence of the method a singular-decomposition technique has
been introduced in [18] and it has even been parallelized in [19].

A new time domain technique using the fixed-point method to decouple the time steps has been introduced in [9] and
applied to two-dimensional eddy current problems described by a single component vector potential. The optimal choice
of the fixed-point permeability for such problems has been presented in [13] both in the time domain and using harmonic
balance principles. The method has been applied to three-dimensional problems in terms of a magnetic vector potential and
an electric scalar potential (A, V –A formulation) in [14] and, employing a current vector potential and a magnetic scalar
potential (T ,Φ–Φ formulation), in [15] and [8]. In contrast to the time-periodic finite element method, the periodicity
condition is directly present in the formulation instead of being satisfied iteratively.

The aim of this work is to present a detailed review of the fixed-point based method and to show its application to
industrial problems arising in the design of large power transformers.

The paper is structured as follows: In the following two sub-sections of the Introduction, two FEM potential formulations
of eddy current problems are briefly reviewed and the continuous and discrete harmonic balance methods to obtain their
steady-state periodic solution are introduced. In Section 2, a method is developed to decouple the harmonics from each
other and hence to solve for each harmonic separately. This is trivial for linear problems, but a special fixed-point iteration
technique is introduced to treat nonlinearity with the harmonics decoupled. Section 3 is devoted to numerical examples
involving large power transformers. The results of the paper are concluded in Section 4.

1.1. Finite element potential formulations

The geometry of an eddy current problem can be naturally split in two: an eddy current domain with unknown current
density distribution and an eddy current free region in which the current density is given [3].

The electromagnetic field problem to be solved in the eddy current domain Ωc consisting of conducting media is de-
scribed by Maxwell’s equations in the quasi-static limit:

curl H = J + curl T 0, (1)

curl E = −∂ B

∂t
, (2)

div B = 0, (3)

div J = 0 (4)

where H is the magnetic field intensity, J is the eddy current density, T 0 is an impressed current vector potential whose
curl is the given current density in coils external to Ωc , E is the electric field intensity, B is the flux density and t is time.
In the eddy current free region Ωn (such as domains containing non-conducting media as well as coils with known current
density) it is sufficient to solve (1) with J = 0 in addition to (3) for the magnetic field quantities. The material relationships
are

B = μ
(|H |)H or H = ν

(|B|)B, (5)

J = σ E or E = ρ J (6)

where μ is the permeability, ν is its reciprocal, the reluctivity and σ is the conductivity with ρ denoting its reciprocal, the
resistivity. In magnetic materials (steel), the relationships (5) are nonlinear, i.e. the permeability and the reluctivity depend
on the magnetic field intensity or the magnetic flux density as indicated.

The numerical solution of the problem is carried out by the method of finite elements. The application of FEM is straight-
forward if potential functions are introduced. Basically, two options are open: the field quantities can either be represented
by a magnetic vector potential A and an electric scalar potential V (A, V –A formulation) as

B = curl A in Ωc ∪ Ωn, E = − ∂

∂t
(A + grad V ) in Ωc, (7)

or by a current vector potential T and a magnetic scalar potential Φ (T ,Φ–Φ formulation) as

H = T 0 + T − grad Φ in Ωc ∪ Ωn, J = curl T in Ωc (8)

with T = 0 in Ωn . The definitions (7) satisfy (2) and (3), whereas those in (8) ensure that (1) and (4) hold. Therefore, the
differential equations (1) and (4) are to be solved in the A, V –A formulation:

curl(ν curl A) + ∂

∂t

[
σ(A + gradV )

] = curl T 0, (9)

−div

[
σ

∂

∂t
(A + grad V )

]
= 0, (10)
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