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In this paper we investigate the behavior of the finite element approximation of multiple
eigenvalues in presence of eigenfunctions with different smoothness. We start from a one-
dimensional example presented in the Handbook of Numerical Analysis by Babuška and
Osborn and extend it to higher order approximation and to two dimensions, confirming
that the different regularities of the eigenfunctions are well seen in the numerical com-
putations. Then we discuss a mixed formulation corresponding to the one-dimensional
example. It turns out that the regularity properties of the eigenfunctions are not well
separated in this particular example, since the estimates have to take into account both
components of the solution.

© 2012 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The finite element approximation of variationally posed eigenvalue problems has been the object of a wide investigation.
Standard estimates (see [1], for instance) imply that in the case of compact and symmetric operators an eigenvalue of
multiplicity m is approximated by exactly m discrete eigenvalues (counted according to their multiplicities) and that the
order of convergence is related to the approximation properties of the corresponding continuous eigenspace. If a multiple
eigenvalue λ is related to eigenfunctions with different smoothness, then from the classical theory it follows that the speed
of convergence is related to the approximation properties of the eigenfunction with lowest regularity. A sharper analysis,
presented in [5] and reviewed in [3] for the situation of interest, shows that indeed the discrete eigenvalues approximating
λ inherit different regularities according to the various approximation properties of the continuous eigenfunctions. The
analysis applies to standard Galerkin approximation of symmetric compact operators and is based on the Ritz approximation
of the solution operator and on the monotonicity property coming from the characterization of the eigenvalues in terms of
Rayleigh quotient.

In Section 2 we introduce our notation and recall the main results of the analysis of Knyazev and Osborn [5].
In Section 3 we elaborate on a one-dimensional example presented in [1], which has been cooked up in order to have

double eigenvalues associated with one singular and one more regular eigenfunction. With piecewise linear elements we
can reproduce the results of Babuška and Osborn [1]; here we extend the computation to quadratic elements: in this case
it is possible to appreciate that neither eigenfunction associated with each double eigenvalues can be approximated with
optimal convergence rate, even if one eigenfunction is more regular than the other. In any case, the numerical tests confirm
the theoretical results.

In Section 4 we extend the one-dimensional example to two dimensions. It turns out that the corresponding multi-
ple eigenvalues have now multiplicity equal to 4 and that only one of the four associated eigenfunctions is regular. The
numerical results, computed with piecewise bilinear elements, are in good agreement with the theoretical results.
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Finally, in Section 5 we study a mixed formulation of the one-dimensional example. This investigation is appealing, since
the theory of Knyazev and Osborn [5] does not extend trivially to this context (there is no monotonicity coming from the
Rayleigh quotient). We derive an explicit formula for the error in the eigenvalues (see also [4] for a similar formula in a more
standard situation) from which it is clear that, as expected, the convergence rate should depend on the approximability of
both components of the solution. It follows that the discrete eigenvalues do not separate in two families as in the previous
tests. Indeed, the two components of the solution cannot be split according to the regularity of the eigenfunctions: singular
eigenfunctions correspond to a second component which is more regular and regular eigenfunctions correspond to a second
component which is singular. We plan to investigate this issue further and, possibly, to extend the theory of Knyazev and
Osborn [5] to mixed approximation; it would be interesting to find an example of mixed problem for which the smoothness
of the eigenfunctions can be clearly individuated (see, for instance [3, Section 5.3]).

2. Approximation theory of multiple eigenvalues

Let V and H be real Hilbert spaces with V ⊂ H with dense and continuous embedding. Let a : V × V → R and
b : H × H → R be symmetric and continuous bilinear forms. We assume that a is V -elliptic and that b is equivalent to
a scalar product on H . As usual, the hypothesis on a can be weakened by assuming that a Gårding like inequality holds
true. We consider the following variationally posed eigenproblem: find λ ∈ R such that there exists u ∈ V with u �= 0 so
that

a(u, v) = λb(u, v) ∀v ∈ V . (1)

Given a sequence of finite dimensional subspaces Vh ⊂ V , with dim Vh = Nh , the Galerkin approximation of problem (1)
reads: find λh ∈ R such that there exists uh ∈ Vh with uh �= 0 so that

a(uh, v) = λhb(uh, v) ∀v ∈ Vh. (2)

In order to analyze the approximation of discrete eigensolutions to the continuous ones, it is usual to introduce the solution
operators T : V → V and Th : V → Vh ⊂ V defined as follows: for f ∈ V , T f ∈ V is the solution of

a(T f , v) = b( f , v) ∀v ∈ V (3)

and Th f ∈ Vh satisfies

a(Th f , v) = b( f , v) ∀v ∈ Vh. (4)

It is well known that the eigenvalues μ (resp. μh) of the operator T (resp. Th) are given by μ = 1/λ (resp. μh = 1/λh).
We assume that T : V → V is a compact operator and that Th converges uniformly to T , that is

‖T − Th‖L(V ) → 0 as h → 0. (5)

From the compactness assumption one obtains that the eigenvalues of problem (1) form an increasing countable se-
quence 0 < λ1 � λ2 � · · · , where we have repeated each eigenvalue according to its algebraic multiplicity. On the other
hand problem (2) has exactly Nh eigenvalues 0 < λ1,h � λ2,h � · · · � λN,h , each again repeated according to its algebraic
multiplicity. We denote by ui the eigenfunction associated to the eigenvalue λi and by ui,h the discrete eigenfunction
associated to λi,h , and we choose ui and ui,h so that b(ui, ui) = b(ui,h, ui,h) = 1, a(ui, ui) = λi , a(ui,h, ui,h) = λi,h , and
b(ui, u j) = b(ui,h, u j,h) = 0 for i �= j.

The convergence in norm stated in (5) implies the convergence of eigenvalues and eigenfunctions in the following sense:

a. for any compact set K contained in the resolvent set of T , there exists h0 > 0 such that, for all h < h0, K is also
contained in the resolvent set of Th . In this case we say that there are no spurious modes;

b. if λ is an eigenvalue of T with multiplicity m, then there are exactly m eigenvalues λ̃1,h , λ̃2,h , . . . , λ̃m,h of Th (not
necessarily distinct) such that λ̃i,h converges to λ as h tends to 0;

c. the gap between the direct sum of the generalized eigenspaces associated to λ̃1,h , λ̃2,h , . . . , λ̃m,h and the generalized
eigenspace associated to λ tends to zero as h tends to 0.

Concerning the a priori error estimates for both eigenvalues and eigenfunctions we report the classical results of the
Babuška–Osborn theory (see [1] and [2] for a recent review on this theory). Let us introduce some notation. Let λ ∈ R be an
eigenvalue of (1) with algebraic multiplicity m, then we denote by E ⊂ V the eigenspace associated to λ and by φ1, . . . , φm
a basis of eigenfunctions in E . Let λ̃1,h, λ̃2,h, . . . , λ̃m,h be the m eigenvalues of problem (2) converging to λ, we denote by
Eh ⊂ Vh the direct sum of the eigenspaces associated to λ̃1,h, λ̃2,h, . . . , λ̃m,h . Then the following estimates hold true:

δ̂(E, Eh) � C
∥∥(T − Th)|E

∥∥
L(V )
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for i = 1, . . . ,m, (6)
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