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This paper deals with a least-squares formulation of a second order transmission problem
for linear elasticity. The problem in the unbounded exterior domain is rewritten with
boundary integral equations on the boundary of the inner domain. In the interior domain
we treat a linear elastic material which can also be nearly incompressible. The least-squares
functional is given in terms of the H̃−1(Ω) and H1/2(Γ ) norms. These norms are realized
by solution operators of corresponding dual norm problems which are approximated using
multilevel preconditioners.
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1. Introduction

The coupling of finite elements and boundary elements has become a popular and powerful method for the solution of
transmission problems of different types. Also the use of mixed finite elements instead of the standard FEM for treating e.g.
mechanical problems has been increased in the last years. With the mixed finite element method more accurate computa-
tions of the stresses can be obtained. Therefore research on the combination of mixed finite element methods and either
boundary integral equations or Dirichlet-to-Neumann (DtN) mappings increased (see e.g. [16,17] and [9]), where boundary
integral equations or DtN mappings can be applied to linear homogeneous materials in bounded or unbounded domains.
The main difficulty in the usage of mixed FEM/BEM coupling methods is to find appropriate finite element spaces which
satisfy discrete inf-sup conditions to assure the existence of a unique discrete solution and the stability of the method.

It is known that least-squares methods need not to fulfill a discrete inf-sup condition and hence they are very interesting
for mixed formulations. Our numerical experiments show that the least square coupling method, applied to model incom-
pressible material, is locking-free when standard finite elements are used – contrary to mixed methods. The investigation
of least-squares methods started with the work of Bramble and Schatz [6]. Afterwards many authors studied the use of
variational formulations of least-squares type (see e.g. [3]). One main least-squares approach was introduced by Stephan
and Wendland [23], Wendland [25], Jesperson [21] and Aziz et al. [1] where the general theory of elliptic boundary value
problems of Agmon–Douglas–Nirenberg type was used and leads to a system of minimization of a least-squares functional
consisting of weighted residuals of differential equations and boundary conditions. Another approach was introduced by
Fix et al. [13,14] where the unique solvability of the variational problem of least-squares type was proved by investigating
the assumptions of the Lax–Milgram lemma. This approach was often used for second order problems rewritten as first
order systems. For the FEM many authors applied these first order least-squares systems (FOSLS) e.g. to elasticity or Stokes
problems (see e.g. [15,11,2,10]).

Bramble and Pasciak [5], or Bramble, Pasciak and Lazarov [7,8] introduced a least-squares functional consisting of a
discrete inner product related to the Sobolev space of order −1. This approach was extended to a least-squares method
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involving the coupling of FEM and BEM by Maischak and Stephan [22]. The resulting formulation involves the usage of inner
products of the Sobolev spaces H̃−1(Ω) and H1/2(∂Ω) for second order problems reduced to a system of first order. For
the discretization standard finite element and boundary element spaces were used by applying multigrid or BPX. Similarly,
Gatica, Harbrecht and Schneider [18] treated exterior boundary value problems where the inner products were realized by
wavelet approximations in connection with multilevel preconditioning and multiscale methods. In this paper, we extend
the above described least-squares method of Maischak and Stephan to a system of second order applied to a linear elastic
transmission problem.

As a model problem we consider a linear elastostatic material for the interior domain Ω and the unbounded region ΩC .
In the interior domain we want to treat also the case of nearly incompressible material. Therefore, we introduce a new
variable as Lagrange multiplier. On the interface boundary Γ = ∂Ω we have prescribed jumps for the displacement u0 and
for the traction t0. The elastic problem in the exterior domain is reduced to a system of strongly elliptic boundary integral
equations on Γ . To define our least-squares functional we give a modified representation of the equilibrium equation of
the inner problem. The unknowns of the system are the displacement u, the pressure p and the traction φ. We show the
existence of an unique solution of the corresponding minimization problem which consists of H̃−1(Ω) and L2(Ω) inner
products on the domain Ω and of the H1/2(Γ ) inner product on the boundary Γ .

For the discretization of the least-squares formulation we use continuous piecewise linear functions for u and piecewise
constant functions for p in Ω and piecewise constant functions for φ on Γ and discrete versions of the inner products. The
discrete least-squares functional consists — in contrast to the continuous formulation — of an additional boundary term in
the H−1/2(Γ ) inner product. We approximate the inner products by the action of multilevel preconditioners.

The paper is organized as follows. In Section 2 we describe the underlying elasticity transmission problem and reduce
the exterior problem in the unbounded domain to boundary integral equations on the boundary Γ . In Section 3 we state
the equivalent minimization problem with the least-squares function J . We prove the assertions of the Lax–Milgram lemma
and hence get the unique solvability. In the next section we present the discretization of the least-squares formulation with
the corresponding discrete bilinear and linear form. Additionally we describe the procedure to deal with the critical inner
products. The proof of an a priori error estimate is given in Section 4. With the local error indicators we can steer an
adaptive algorithm to get a better mesh refinement and a more effective computation of the solution. Section 5 treat the
system of linear equations arising from the discrete variational formulation. Finally, we give in Section 6 some numerical
examples to show the efficient use of the least-squares formulation in comparison with the standard Galerkin formulation.

In the following we will write a � b if a � Cb with a constant C independent of the mesh size h, and a ∼ b if a � b and
b � a.

2. Transmission problem

Let Ω ⊂ Rd , d = 2 or 3, be a bounded domain with Lipschitz boundary Γ = ∂Ω and ΩC = Rd \ Ω̄ with normal n on Γ

pointing into ΩC .
For the interior elastic problem in Ω we allow incompressible material. We assume Hooke’s law connecting the stress

tensor for the displacement u and the pressure p in form

σ i j(u, p) = 2μεi j(u) − δi j p

whereas we assume homogeneous elastic material behavior in ΩC . Let F ∈ L2(Ω), u0 ∈ H1/2(Γ ), t0 ∈ H−1/2(Γ ), λ ∈ R+ . We
consider the model transmission problem of finding u1 ∈ H1(Ω), u2 ∈ H1

loc(Ω
C ), p ∈ L2(Ω) such that

L(u1, p) = F; 1

λ
p + div u1 = 0 in Ω, (1)

−�∗u2 = −μ̂�u2 − (λ̂ + μ̂)grad div u2 = 0 in ΩC , (2)

u1 = u2 + u0 on Γ, (3)

σ (u1, p) · n = T2(∂·,n)u2 + t0 on Γ, (4)

u2 = O
(|x|−1) (|x| → ∞)

, (5)

where L(u1, p) = (L1(u11, p), . . . , Ld(u1d, p)) with Li(u1i, p) = −∑d
j=1

∂σ i j
∂x j

= −(divσ )i .

The traction T2(∂·,n)u2 on the boundary Γ is given by T2(∂·,n)u2 = σ (u2) · n = 2μ̂∂nu2 + λ̂n div u2 + μ̂n × curl u2 and
u23 ≡ 0 for d = 2.

In the following, we will apply the boundary integral equation method in ΩC and reduce the original problem to a
nonlocal transmission problem on the bounded domain Ω .

The fundamental solution of the Lamé operator �∗ is given by

Γi j(x − y) = 1

4π(d − 1)μ̂(λ̂ + 2μ̂)

(
(λ̂ + 3μ̂)γd(x,y)δi j + (λ̂ + μ̂)

(xi − yi)(x j − y j)

|x − y|d
)
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