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a b s t r a c t

We completely determine the complexity status of the 3-colorability problem for heredi-
tary graph classes defined by two forbidden induced subgraphs with at most five vertices.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The coloring problem is one of classical problems on graphs. Its formulation is as follows. A coloring is an arbitrary
mapping of colors to vertices of some graph. A graph coloring is said to be proper if no pair of adjacent vertices have the
same color. The chromatic number χ(G) of a graph G is the minimal number of colors in proper colorings of G. The coloring
problem for a given graph and a number k is to determinewhether its chromatic number is atmost k or not. The k-colorability
problem is to verify whether vertices of a given graph can be properly colored with at most k colors.

A graph H is an induced subgraph of G if H is obtained from G by deletion of vertices. A class is a set of simple unlabeled
graphs. A class of graphs is hereditary if it is closed under deletion of vertices. It is well known that any hereditary (and only
hereditary) graph class X can be defined by a set of its forbidden induced subgraphs Y. We write X = Free(Y) in this case,
and the graphs in X are said to be Y-free. If Y = {G}, then we will write ‘‘G-free’’ instead of ‘‘{G}-free’’. If a hereditary class
can be defined by a finite set of the forbidden induced subgraphs, then it is said to be finitely defined.

The coloring problem for G-free graphs is polynomial-time solvable if G is an induced subgraph of P4 or P3 + K1, and it
is NP-complete in all other cases [13]. The situation for the k-colorability problem is not clear, even when only one induced
subgraph is forbidden. The complexity of the 3-colorability problem is known for all classes of the form Free({G}) with
|V (G)| ≤ 6 [4]. A similar result for G-free graphs with |V (G)| ≤ 5 was recently obtained for the 4-colorability problem [9].
On the other hand, for fixed k, the complexity status of the k-colorability problem is open for P7-free graphs (k = 3), for
P6-free graphs (k = 4), and for P2 + P3-free graphs (k = 5).

When we forbid two induced subgraphs, the situation becomes more difficult. For the coloring problem, a complete
classification for pairs is open, even if forbidden induced subgraphs have at most four vertices. Although, the complexity is
known for some such pairs [8,15,17,18,21]. The same is true for the 3-colorability problem and the five-vertex barrier. We
determine here its complexity status for all classes defined by two forbidden induced subgraphs with at most five vertices.
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2. Notation

For a vertex x of a graph, deg(x) means its degree, N(x) is its neighborhood, N[x] denotes its closed neighborhood (i.e. the
set N(x) ∪ {x}), Nk(x) is the set of vertices lying at distance k from x. The formula ∆(G) is the maximum degree of vertices
in G.

As usual, Pn, Cn, Kn,On, and Kp,q stand respectively for the simple pathwith n vertices, the chordless cycle with n vertices,
the complete graph with n vertices, the empty graph with n vertices, and the complete bipartite graph with p vertices in the
first part and q vertices in the second. The graph paw is obtained from a triangle by adding a vertex and an edge incident to
the new vertex and a vertex of the triangle. The graphs fork, bull, butterfly have the vertex set {x1, x2, x3, x4, x5}. The edge
set for fork is {x1x2, x1x3, x1x4, x4x5}, for bull is {x1x2, x1x3, x2x3, x1x4, x2x5}, for butterfly is {x1x2, x1x3, x2x3, x1x4, x1x5, x4x5}.
The graph hammerk has the vertex set {x1, x2, x3, y1, y2, . . . , yk} and the edges x1x2, x1x3, x2x3, x1y1, y1y2, . . . , yk−1yk. Note
that paw = hammer1.

The complement graph G of G is a graph on the same set of vertices, and two vertices of G are adjacent if and only if they
are not adjacent in G. The sum G1 +G2 is the disjoint union of G1 and G2. The disjoint union of k copies of a graph G is denoted
by kG. For a graph G and a set V ′

⊆ V (G), the formula G \ V ′ denotes the subgraph of G obtained by deleting all vertices
in V ′.

3. Boundary graph classes

The notion of a boundary graph class is a helpful tool for the analysis of the computational complexity of graph problems
in the family of hereditary graph classes. This notion was originally introduced by V.E. Alekseev for the independent set
problem [1]. It was later applied for the dominating set problem [3]. A study of boundary graph classes for some graph
problems was extended in the paper of Alekseev et al. [2], where the notion was formulated in its most general form. We
will give the necessary definitions.

Let Π be an NP-complete graph problem. A hereditary graph class is said to be Π-easy if Π is polynomial-time solvable
for its graphs. If the problemΠ is NP-complete for graphs in a hereditary class, then this class is said to beΠ-hard. A class of
graphs is said to be Π-limit if this class is the limit of an infinite monotonically decreasing chain of Π-hard classes. In other
words, X is Π-limit if there is an infinite sequence X1 ⊇ X2 ⊇ · · · of Π-hard classes, such that X =


∞

k=1 Xk. A Π-limit
class that is minimal under inclusion is said to be Π-boundary.

The following theorem certifies the significance of the notion of a boundary class.

Theorem 1 ([1]). A finitely defined class is Π-hard if and only if it contains some Π-boundary class.

This theorem shows that knowledge of allΠ-boundary classes leads to a complete classification of finitely defined graph
classes with respect to the complexity of Π . Two concrete classes of graphs are known to be boundary for several graph
problems. The first of them is S. It constitutes all forests with atmost three leaves in each connected component. The second
one is T , which is the set of line graphs of graphs in S. The paper [2] is a good survey about graph problems, for which either
S or T is boundary.

Some classes are known to be limit and boundary for the 3-colorability problem. The set F of all forests and the set T ′

of line graphs of forests with degrees at most three are limit classes for it [14]. Some continuum set of boundary classes for
the k-colorability problem is known for any fixed k ≥ 3 [12,19,20].

The main result of this paper can be briefly formulated by means of F and T ′. Namely, if G1 and G2 have at most
five vertices, then the 3-colorability problem is tractable for X = Free({G1,G2}) if F ⊈ X, T ′

⊈ X, {G1,G2} ≠

{K1,4, bull}, {G1,G2} ≠ {K1,4, butterfly}, and the problem is NP-complete for all other choices of G1 and G2 on at most five
vertices.

4. NP-completeness of the 3-colorability problem for some graph classes

The results listed above on limit classes for the 3-colorability problem together with Theorem 1 allow us to prove
NP-completeness of the problem for some finitely defined classes. Namely, if Y is a finite set of graphs, and Y ∩ F = ∅

or Y ∩ T ′
= ∅, then the problem is NP-complete for Free(Y). But, this idea cannot be applied to Free({K1,4, bull, butterfly}),

because K1,4 ∈ F , bull ∈ T ′, and butterfly ∈ T ′. Nevertheless, the 3-colorability problem is NP-complete for this class. To
show this, we use a graph operation called diamond implantation.

Let G be a graph with a non-leaf vertex x. Applying a diamond implantation to x implies:

• an arbitrary splitting N(x) into two nonempty parts A and B
• deletion of x and addition of new vertices y1, y2, y3, y4
• addition of all edges of the form y1a, a ∈ A and of the form y4b, b ∈ B
• addition of the edges y1y2, y1y3, y2y3, y2y4, y3y4

Clearly, for every graph G and every non-leaf vertex in G, applying the diamond implantation preserves 3-colorability.
This property and the paper [11] give the key idea of the proof of Lemma 1.
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