
Discrete Mathematics 338 (2015) 1938–1946

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

New bounds for chromatic polynomials and chromatic roots
Jason Brown, Aysel Erey ∗

Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

a r t i c l e i n f o

Article history:
Received 20 March 2015
Received in revised form 20 April 2015
Accepted 21 April 2015
Available online 6 June 2015

Keywords:
k-colouring
Chromatic number
Chromatic polynomial
Chromatic root

a b s t r a c t

If G is a k-chromatic graph of order n then it is known that the chromatic polynomial of G,
π(G, x), is at most x(x − 1) · · · (x − (k − 1))xn−k

= (x)↓kxn−k for every x ∈ N. We improve
here this bound by showing that

π(G, x) ≤ (x)↓k(x − 1)∆(G)−k+1xn−1−∆(G)

for every x ∈ N, where ∆(G) is the maximum degree of G. Secondly, we show that if G is a
connected k-chromatic graph of order nwhere k ≥ 4 thenπ(G, x) is atmost (x)↓k(x−1)n−k

for every real x ≥ n− 2+

 n
2


−


k
2


− n + k

2
(it had been previously conjectured that

this inequality holds for all x ≥ k). Finally, we provide an upper bound on the moduli of
the chromatic roots that is an improvement over known bounds for dense graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G) (the order and size of the graph are, respectively, |V (G)| and
|E(G)|). For a nonnegative integer x, an x-colouring of G is a function f : V (G) → {1, . . . , x} such that f (u) ≠ f (v) for every
uv ∈ E(G). The chromatic number χ(G) is smallest x for which G has an x-colouring.We say that G is k-chromatic ifχ(G) = k.
The well known chromatic polynomial π(G, x) is the polynomial whose values at nonnegative integral values of x count the
number of x-colourings ofG. The fact thatπ(G, x) is a polynomial in x follows from thewell-known edge addition–contraction
formula:

π(G, x) = π(G + uv, x) + π(G · uv, x)

if u and v are nonadjacent vertices ofG. An i-colour partition ofG is a partition of the vertices ofG into inonempty independent
sets. Let ai(G) denote the number of i-colour partitions of G. It is easy to see that

π(G, x) =

n
i=χ(G)

ai(G) (x)↓i

where (x)↓i = x(x − 1) . . . (x − i + 1) is the ith falling factorial of x and n is the order of G. Moreover, ai(G) also satisfies
an edge addition–contraction formula, namely, ai(G) = ai(G + uv) + ai(G · uv). We refer the reader to [1] for a general
discussion of graph colourings and chromatic polynomials.

Let Gk(n) be the family of all k-chromatic graphs of order n. Given a natural number x ≥ k, it is natural to enquire about
the maximum number of x-colourings among k-chromatic graphs of order n, that is, among graphs in Gk(n). Tomescu [7]
studied this problem and showed the following:
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Theorem 1.1 ([7, pg. 239]). Let G be a graph in Gk(n). Then for every x ∈ N,

π(G, x) ≤ (x)↓k xn−k.

Moreover, when x ≥ k, the equality is achieved if and only if G ∼= Kk∪· (n − k)K1 (the graph consisting of a k-clique plus n − k
isolated vertices).

The next natural problem is to maximize the number of x-colourings of a graph over the family of connected k-chromatic
graphs of order n (we denote this family by Ck(n)). Interestingly, the problem becomes much more complicated when the
connectedness condition is imposed. The answer is trivialwhen x = k = 2, as any2-chromatic connected graphhas precisely
two 2-colourings. It is well known that (see, for example, [1]) if G is a connected graph of order n then π(G, x) ≤ x(x−1)n−1

for every x ∈ N and furthermore, when x ≥ 3 the equality is achieved if and only if G is a tree. Therefore, for k = 2 and
x ≥ 3, the maximum number of x-colourings of a graph in C2(n) is equal to x(x − 1)n−1 and extremal graphs are trees.

Tomescu settled the problem for x = k = 3 in [6] and later extended it for x ≥ k = 3 in [9] by showing that if G is a
graph in C3(n) then

π(G, x) ≤ (x − 1)n − (x − 1) for odd n

and

π(G, x) ≤ (x − 1)n − (x − 1)2 for even n

for every integer x ≥ 3 and furthermore the extremal graph is the odd cycle Cn when n is odd and odd cycle with a vertex
of degree 1 attached to the cycle (denoted C1

n−1) when n is even.
Onemight subsequently think thatmaximizing thenumber of x-colourings of a graph inCk(n) should dependon the value

of k. Let C∗

k (n) be the set of all graphs in Ck(n) which have size


k
2


+ n − k and clique number k (that is, C∗

k (n) consists
of graphs which are obtained from a k-clique by recursively attaching leaves). In [5] Tomescu considered the problem for
x = k ≥ 4 and conjectured the following (see also [8,9]):

Conjecture 1.2 ([5]). Let G be a graph in Ck(n) where k ≥ 4. Then

π(G, k) ≤ k! (k − 1)n−k,

or, equivalently, ak(G) ≤ (k − 1)n−k, with the extremal graphs belong to C∗

k (n).

The authors in [1] mention the following conjecture which broadly extends Conjecture 1.2 to all nonnegative integers x:

Conjecture 1.3 ([1, pg. 315]). Let G be a graph in Ck(n) where k ≥ 4. Then for every x ∈ N,

π(G, x) ≤ (x)↓k(x − 1)n−k.

Moreover, for x ≥ k, the equality holds if and only if G belongs to C∗

k (n).

It is not hard to see that Conjecture 1.3 implies Theorem 1.1 because the chromatic polynomial of a graph is equal to
the product of chromatic polynomials of its connected components. However, the problem of maximizing the number of
colourings appears more difficult when graphs are connected, since the answer to this problem depends on the value of k
(the structure of extremal graphs seem to be different for k = 2 and 3). As Tomescu points out [7], the difficulty may lie in
the lack of a characterization of k-critical graphs (those minimal with respect to k-chromaticity) when k ≥ 4.

If G ∈ C∗

k (n) then it is known that (see, for example, [9]) π(G, x) = (x)↓k (x − 1)n−k as one can first colour the clique of
order k and then recursively colour the remaining vertices (which have only one coloured neighbour). On the other hand,
one can see that if π(G, x) = (x)↓k (x − 1)n−k then G ∈ C∗

k (n) because the multiplicity of the root 1 of the chromatic
polynomial of a graph G is equal to the number of blocks of G [1, pg. 35] (a block of G is a maximal connected subgraph of
G that has no cut-vertex). Therefore, in Conjecture 1.3, the extremal graphs are automatically determined if one can show
that π(G, x) ≤ (x)↓k (x − 1)n−k.

In this article, we first improve Tomescu’s general upper bound (Theorem 1.1), and show that if G ∈ Gk(n), then

π(G, x) ≤ (x)↓k(x − 1)∆(G)−k+1xn−1−∆(G)

for every x ∈ N (Theorem 2.2). Secondly, we discuss Conjecture 1.3 and show that if G ∈ Ck(n) where k ≥ 4 then π(G, x) is

at most (x)↓k(x − 1)n−k for every real x ≥ n − 2 +

 n
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− n + k
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(Theorem 2.5). Finally, we also give a new upper

bound on the moduli of the chromatic roots of a graph (Theorem 2.7); our bound improves previously known bounds for
dense graphs.
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