Some bounds on the neighbor-distinguishing index of graphs

Yiqiao Wang ${ }^{\text {a,*, }}$, Weifan Wang ${ }^{\text {b }}$, Jingjing Huo ${ }^{\text {c }}$
a School of Management, Beijing University of Chinese Medicine, Beijing 100029, China
${ }^{\mathrm{b}}$ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
${ }^{\text {c }}$ Department of Mathematics, Hebei University of Engineering, Handan 056038, China

A R T I CLE INFO

Article history:

Received 19 March 2015
Received in revised form 3 May 2015
Accepted 4 May 2015
Available online 5 June 2015

Keywords:

Neighbor-distinguishing edge coloring
Maximum degree
Edge-partition

Abstract

A proper edge coloring of a graph G is neighbor-distinguishing if any two adjacent vertices have distinct sets consisting of colors of their incident edges. The neighbor-distinguishing index of G is the minimum number $\chi_{a}^{\prime}(G)$ of colors in a neighbor-distinguishing edge coloring of G.

Let G be a graph with maximum degree Δ and without isolated edges. In this paper, we prove that $\chi_{a}^{\prime}(G) \leq 2 \Delta$ if $4 \leq \Delta \leq 5$, and $\chi_{a}^{\prime}(G) \leq 2.5 \Delta$ if $\Delta \geq 6$. This improves a result in Zhang et al. (2014), which states that $\chi_{a}^{\prime}(G) \leq 2.5 \Delta+5$ for any graph G without isolated edges. Moreover, we prove that if G is a semi-regular graph (i.e., each edge of G is incident to at least one Δ-vertex), then $\chi_{a}^{\prime}(G) \leq \frac{5}{3} \Delta+\frac{13}{3}$.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and simple. Let $V(G)$ and $E(G)$ denote the vertex set and the edge set of a graph G, respectively. Let $N_{G}(v)$ denote the set of neighbors of a vertex v in G and $d_{G}(v)=\left|N_{G}(v)\right|$ denote the degree of v in G. The vertex v is called a k-vertex if $d_{G}(v)=k$. Let $\Delta(G)$ and $\delta(G)$ denote the maximum degree and the minimum degree of a vertex in G, respectively. For a vertex $v \in V(G)$ and an integer $i \geq 1$, let $d_{i}(v)$ denote the number of i-vertices adjacent to v. An edge-partition of a graph G is a decomposition of G into subgraphs $G_{1}, G_{2}, \ldots, G_{m}$ such that $E(G)=\bigcup_{i=1}^{m} E\left(G_{i}\right)$ with $E\left(G_{i}\right) \cap E\left(G_{j}\right)=\emptyset$ for all $i \neq j$.

An edge k-coloring of a graph G is a function $\phi: E(G) \rightarrow\{1,2, \ldots, k\}$ such that any two adjacent edges receive different colors. The chromatic index, denoted by $\chi^{\prime}(G)$, of a graph G is the smallest integer k such that G has an edge k-coloring. Given an edge k-coloring ϕ of G, we use $C_{\phi}(v)$ to denote the set of colors assigned to those edges incident to a vertex v. The coloring ϕ is called a neighbor-distinguishing edge coloring (an NDE-coloring for short) if $C_{\phi}(u) \neq C_{\phi}(v)$ for any pair of adjacent vertices u and v. The neighbor-distinguishing index $\chi_{a}^{\prime}(G)$ of a graph G is the smallest integer k such that G has a k-NDE-coloring. A graph G is normal if it contains no isolated edges. Clearly, G has an NDE-coloring if and only if G is normal. Thus, we always assume that G is normal in the following discussion.

By definition, it is easy to see that $\chi_{a}^{\prime}(G) \geq \chi^{\prime}(G) \geq \Delta(G)$ for any graph G. On the other hand, Zhang, Liu and Wang [13] proposed the following challenging conjecture, and confirmed its truth for paths, cycles, trees, complete graphs and complete bipartite graphs.

Conjecture 1. Every connected graph G with $|V(G)| \geq 6$ has $\chi_{a}^{\prime}(G) \leq \Delta(G)+2$.

[^0]Balister et al. [2] affirmed Conjecture 1 for bipartite graphs and all graphs with $\Delta(G)=3$. They also proved that $\chi_{a}^{\prime}(G) \leq \Delta(G)+O(\log \chi(G))$, where $\chi(G)$ is the vertex chromatic number of the graph G. This result and Brooks' Theorem imply immediately that $\chi_{a}^{\prime}(G) \leq 2 \Delta(G)$ if $\Delta(G)$ is sufficiently large. Using probabilistic method, Hatami [4] showed that every graph G with $\Delta(G)>10^{20}$ has $\chi_{a}^{\prime}(G) \leq \Delta(G)+300$. Akbari, Bidkhori and Nosrati [1] proved that every graph G satisfies $\chi_{a}^{\prime}(G) \leq 3 \Delta(G)$. Zhang, Wang and Lih [14] improved this bound to that $\chi_{a}^{\prime}(G) \leq 2.5 \Delta(G)+5$ for any graph G. For planar graphs G, Horňák, Huang and Wang [6] showed that $\chi_{a}^{\prime}(G) \leq \Delta(G)+2$ if $\Delta(G) \geq 12$. More recently, Wang and Huang [9] further verified that if G is a planar graph with $\Delta(G) \geq 16$, then $\chi_{a}^{\prime}(G) \leq \Delta(G)+1$, and moreover $\chi_{a}^{\prime}(G)=\Delta(G)+1$ if and only if G contains two adjacent vertices of maximum degree. This result is an extension to the result in [3], which says that if G is a planar bipartite graph with $\Delta(G) \geq 12$, then $\chi_{a}^{\prime}(G) \leq \Delta(G)+1$. The reader is referred to [5,10-12] for other results on this direction.

In this paper, we investigate the neighbor-distinguishing index of some special graphs such as graphs with maximum degree 4 or 5 and semi-regular graphs. These results are applied to improve the upper bound of the neighbor-distinguishing index on general graphs. Here a graph G is called semi-regular if each edge of G is incident to at least one vertex of maximum degree. Clearly, a regular graph is a semi-regular graph, and not vice versa.

2. Graphs with $\Delta=4$

This section is devoted to the study of the neighbor-distinguishing index of graphs with maximum degree 4.
Lemma 2.1 ([7]). If G is a $2 k$-regular graph with $k \geq 1$, then G is 2-factorizable.
It is well-known that, given a graph G, there exists a $\Delta(G)$-regular graph H such that $G \subseteq H$. This fact, together with Lemma 2.1, implies that every graph G with $\Delta(G)=4$ can be edge-partitioned into two subgraphs G_{1} and G_{2} such that $\Delta\left(G_{i}\right) \leq 2$ for $i=1,2$.

In order to prove the main result in this section, i.e., Theorem 2.5, we need the following three useful consequences:
Theorem 2.2 ([14]). If a normal graph G has an edge-partition into two normal subgraphs G_{1} and G_{2}, then $\chi_{a}^{\prime}(G) \leq \chi_{a}^{\prime}\left(G_{1}\right)+$ $\chi_{a}^{\prime}\left(G_{2}\right)$.

Theorem 2.3 ([13]). If P is a path of length at least two, then $\chi_{a}^{\prime}(P) \leq 3$.
Theorem 2.4 ([2]). If G is a graph with $\Delta(G) \leq 3$, then $\chi_{a}^{\prime}(G) \leq 5$.
Suppose that ϕ is a partial NDE-coloring of a graph G using a color set C. We call two adjacent vertices u and v conflict under ϕ (or simply conflict) if $C_{\phi}(u)=C_{\phi}(v)$. An edge $u v$ is said to be legally colored if its color is different from that of its neighbors and no pair of conflict vertices is produced.

Theorem 2.5. If G is a graph with $\Delta(G) \leq 4$, then $\chi_{a}^{\prime}(G) \leq 8$.
Proof. We prove the theorem by induction on the edge number $|E(G)|$. If $|E(G)| \leq 8$, the theorem holds trivially. Let G be a graph with $\Delta(G) \leq 4$ and $|E(G)| \geq 9$. If $\Delta(G) \leq 3$, then the result follows from Theorem 2.4. So suppose that $\Delta(G)=4$. The proof is split into the following cases, depending on the size of $\delta(G)$.

Case $1 \delta(G)=1$.
Let x be a 1-vertex adjacent to a vertex y. Let $H=G-x y$. Then H is a normal graph with $\Delta(H) \leq 4$ and $|E(H)|<|E(G)|$. By the induction hypothesis, H has an 8-NDE-coloring ϕ using the color set $C=\{1,2, \ldots, 8\}$. Note that $\left|C_{\phi}(y)\right|=d_{H}(y)=$ $d_{G}(y)-1 \leq 3$ and y has at most $d_{G}(y)-1 \leq 3$ possible conflict vertices. Thus, $x y$ has at most $\left|C_{\phi}(y)\right|+3 \leq 6$ forbidden colors when colored, we can color $x y$ with a color in $C \backslash C_{\phi}(y)$ such that y does not conflict with its neighbors. So an 8-NDE-coloring of G is constructed.

Case $2 \delta(G)=2$.
Let x be a 2-vertex with neighbors y and z. Without loss of generality, assume that $2 \leq d_{G}(y) \leq d_{G}(z) \leq 4$. There are two possibilities to be handled.

Case 2.1 $d_{G}(y)=2$.
Let w denote the neighbor of y other than x. Without loss of generality, we assume that $d_{G}(w) \geq 3$, for otherwise we may further consider the neighbor of w other than y until a desired vertex is found. Let $H=G-w y$. Then H is a normal graph with $\Delta(H) \leq 4$ and $|E(H)|<|E(G)|$. By the induction hypothesis, H has an 8-NDE-coloring ϕ with the color set $C=\{1,2, \ldots, 8\}$. We first remove the color of $x y$. Since w has at most three conflict vertices and y has at most one conflict vertex, we can color $y w$ with a color $a \in C \backslash\left(C_{\phi}(w) \cup\{\phi(x z)\}\right)$ and $x y$ with a color in $C \backslash\{a, \phi(x z)\}$ such that neither of x, y, w conflicts with its neighbors.

https://daneshyari.com/en/article/6423312

Download Persian Version:

https://daneshyari.com/article/6423312

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: yqwang@bucm.edu.cn (Y. Wang), wwf@zjnu.cn (W. Wang).

