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a b s t r a c t

A proper edge coloring of a graph G is neighbor-distinguishing if any two adjacent vertices
have distinct sets consisting of colors of their incident edges. The neighbor-distinguishing
index of G is the minimum number χ ′

a(G) of colors in a neighbor-distinguishing edge
coloring of G.

Let G be a graph with maximum degree ∆ and without isolated edges. In this paper, we
prove that χ ′

a(G) ≤ 2∆ if 4 ≤ ∆ ≤ 5, and χ ′
a(G) ≤ 2.5∆ if∆ ≥ 6. This improves a result in

Zhang et al. (2014), which states that χ ′
a(G) ≤ 2.5∆ + 5 for any graph G without isolated

edges. Moreover, we prove that if G is a semi-regular graph (i.e., each edge of G is incident
to at least one ∆-vertex), then χ ′

a(G) ≤
5
3∆ +

13
3 .

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and simple. Let V (G) and E(G) denote the vertex set and the edge set of a
graph G, respectively. Let NG(v) denote the set of neighbors of a vertex v in G and dG(v) = |NG(v)| denote the degree of v in
G. The vertex v is called a k-vertex if dG(v) = k. Let ∆(G) and δ(G) denote the maximum degree and the minimum degree of
a vertex in G, respectively. For a vertex v ∈ V (G) and an integer i ≥ 1, let di(v) denote the number of i-vertices adjacent to
v. An edge-partition of a graph G is a decomposition of G into subgraphs G1,G2, . . . ,Gm such that E(G) =

m
i=1 E(Gi) with

E(Gi) ∩ E(Gj) = ∅ for all i ≠ j.
An edge k-coloring of a graph G is a function φ : E(G) → {1, 2, . . . , k} such that any two adjacent edges receive different

colors. The chromatic index, denoted by χ ′(G), of a graph G is the smallest integer k such that G has an edge k-coloring.
Given an edge k-coloring φ of G, we use Cφ(v) to denote the set of colors assigned to those edges incident to a vertex v.
The coloring φ is called a neighbor-distinguishing edge coloring (an NDE-coloring for short) if Cφ(u) ≠ Cφ(v) for any pair of
adjacent vertices u and v. The neighbor-distinguishing index χ ′

a(G) of a graph G is the smallest integer k such that G has a
k-NDE-coloring. A graph G is normal if it contains no isolated edges. Clearly, G has an NDE-coloring if and only if G is normal.
Thus, we always assume that G is normal in the following discussion.

By definition, it is easy to see that χ ′
a(G) ≥ χ ′(G) ≥ ∆(G) for any graph G. On the other hand, Zhang, Liu and

Wang [13] proposed the following challenging conjecture, and confirmed its truth for paths, cycles, trees, complete graphs
and complete bipartite graphs.

Conjecture 1. Every connected graph G with |V (G)| ≥ 6 has χ ′
a(G) ≤ ∆(G) + 2.
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Balister et al. [2] affirmed Conjecture 1 for bipartite graphs and all graphs with ∆(G) = 3. They also proved that
χ ′
a(G) ≤ ∆(G) + O(logχ(G)), where χ(G) is the vertex chromatic number of the graph G. This result and Brooks’ Theorem

imply immediately that χ ′
a(G) ≤ 2∆(G) if ∆(G) is sufficiently large. Using probabilistic method, Hatami [4] showed that

every graph G with ∆(G) > 1020 has χ ′
a(G) ≤ ∆(G) + 300. Akbari, Bidkhori and Nosrati [1] proved that every graph G

satisfies χ ′
a(G) ≤ 3∆(G). Zhang, Wang and Lih [14] improved this bound to that χ ′

a(G) ≤ 2.5∆(G) + 5 for any graph G.
For planar graphs G, Horňák, Huang and Wang [6] showed that χ ′

a(G) ≤ ∆(G) + 2 if ∆(G) ≥ 12. More recently, Wang and
Huang [9] further verified that ifG is a planar graphwith∆(G) ≥ 16, thenχ ′

a(G) ≤ ∆(G)+1, andmoreoverχ ′
a(G) = ∆(G)+1

if and only if G contains two adjacent vertices of maximum degree. This result is an extension to the result in [3], which says
that if G is a planar bipartite graph with ∆(G) ≥ 12, then χ ′

a(G) ≤ ∆(G) + 1. The reader is referred to [5,10–12] for other
results on this direction.

In this paper, we investigate the neighbor-distinguishing index of some special graphs such as graphs with maximum
degree 4 or 5 and semi-regular graphs. These results are applied to improve the upper bound of the neighbor-distinguishing
index on general graphs. Here a graph G is called semi-regular if each edge of G is incident to at least one vertex of maximum
degree. Clearly, a regular graph is a semi-regular graph, and not vice versa.

2. Graphs with ∆ = 4

This section is devoted to the study of the neighbor-distinguishing index of graphs with maximum degree 4.

Lemma 2.1 ([7]). If G is a 2k-regular graph with k ≥ 1, then G is 2-factorizable.

It is well-known that, given a graph G, there exists a ∆(G)-regular graph H such that G ⊆ H . This fact, together with
Lemma 2.1, implies that every graph G with ∆(G) = 4 can be edge-partitioned into two subgraphs G1 and G2 such that
∆(Gi) ≤ 2 for i = 1, 2.

In order to prove the main result in this section, i.e., Theorem 2.5, we need the following three useful consequences:

Theorem 2.2 ([14]). If a normal graph G has an edge-partition into two normal subgraphs G1 and G2, then χ ′
a(G) ≤ χ ′

a(G1) +

χ ′
a(G2).

Theorem 2.3 ([13]). If P is a path of length at least two, then χ ′
a(P) ≤ 3.

Theorem 2.4 ([2]). If G is a graph with ∆(G) ≤ 3, then χ ′
a(G) ≤ 5.

Suppose that φ is a partial NDE-coloring of a graph G using a color set C . We call two adjacent vertices u and v conflict
under φ (or simply conflict) if Cφ(u) = Cφ(v). An edge uv is said to be legally colored if its color is different from that of its
neighbors and no pair of conflict vertices is produced.

Theorem 2.5. If G is a graph with ∆(G) ≤ 4, then χ ′
a(G) ≤ 8.

Proof. We prove the theorem by induction on the edge number |E(G)|. If |E(G)| ≤ 8, the theorem holds trivially. Let G be
a graph with ∆(G) ≤ 4 and |E(G)| ≥ 9. If ∆(G) ≤ 3, then the result follows from Theorem 2.4. So suppose that ∆(G) = 4.
The proof is split into the following cases, depending on the size of δ(G).

Case 1 δ(G) = 1.

Let x be a 1-vertex adjacent to a vertex y. Let H = G− xy. Then H is a normal graph with ∆(H) ≤ 4 and |E(H)| < |E(G)|.
By the induction hypothesis, H has an 8-NDE-coloring φ using the color set C = {1, 2, . . . , 8}. Note that |Cφ(y)| = dH(y) =

dG(y)−1 ≤ 3 and y has atmost dG(y)−1 ≤ 3 possible conflict vertices. Thus, xy has atmost |Cφ(y)|+3 ≤ 6 forbidden colors
when colored, we can color xywith a color in C \Cφ(y) such that y does not conflict with its neighbors. So an 8-NDE-coloring
of G is constructed.

Case 2 δ(G) = 2.

Let x be a 2-vertex with neighbors y and z. Without loss of generality, assume that 2 ≤ dG(y) ≤ dG(z) ≤ 4. There are two
possibilities to be handled.

Case 2.1 dG(y) = 2.

Let w denote the neighbor of y other than x. Without loss of generality, we assume that dG(w) ≥ 3, for otherwise we
may further consider the neighbor of w other than y until a desired vertex is found. Let H = G − wy. Then H is a normal
graph with ∆(H) ≤ 4 and |E(H)| < |E(G)|. By the induction hypothesis, H has an 8-NDE-coloring φ with the color set
C = {1, 2, . . . , 8}. We first remove the color of xy. Since w has at most three conflict vertices and y has at most one conflict
vertex, we can color yw with a color a ∈ C \ (Cφ(w) ∪ {φ(xz)}) and xy with a color in C \ {a, φ(xz)} such that neither of
x, y, w conflicts with its neighbors.
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