Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Some bounds on the neighbor-distinguishing index of graphs

Yiqiao Wang^{a,*}, Weifan Wang^b, Jingjing Huo^c

^a School of Management, Beijing University of Chinese Medicine, Beijing 100029, China

^b Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

^c Department of Mathematics, Hebei University of Engineering, Handan 056038, China

ARTICLE INFO

Article history: Received 19 March 2015 Received in revised form 3 May 2015 Accepted 4 May 2015 Available online 5 June 2015

Keywords: Neighbor-distinguishing edge coloring Maximum degree Edge-partition

ABSTRACT

A proper edge coloring of a graph *G* is neighbor-distinguishing if any two adjacent vertices have distinct sets consisting of colors of their incident edges. The neighbor-distinguishing index of *G* is the minimum number $\chi'_a(G)$ of colors in a neighbor-distinguishing edge coloring of *G*.

Let *G* be a graph with maximum degree Δ and without isolated edges. In this paper, we prove that $\chi'_a(G) \leq 2\Delta$ if $4 \leq \Delta \leq 5$, and $\chi'_a(G) \leq 2.5\Delta$ if $\Delta \geq 6$. This improves a result in Zhang et al. (2014), which states that $\chi'_a(G) \leq 2.5\Delta + 5$ for any graph *G* without isolated edges. Moreover, we prove that if *G* is a semi-regular graph (i.e., each edge of *G* is incident to at least one Δ -vertex), then $\chi'_a(G) \leq \frac{5}{3}\Delta + \frac{13}{3}$.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and simple. Let V(G) and E(G) denote the vertex set and the edge set of a graph G, respectively. Let $N_G(v)$ denote the set of neighbors of a vertex v in G and $d_G(v) = |N_G(v)|$ denote the degree of v in G. The vertex v is called a k-vertex if $d_G(v) = k$. Let $\Delta(G)$ and $\delta(G)$ denote the maximum degree and the minimum degree of a vertex in G, respectively. For a vertex $v \in V(G)$ and an integer $i \ge 1$, let $d_i(v)$ denote the number of i-vertices adjacent to v. An *edge-partition* of a graph G is a decomposition of G into subgraphs G_1, G_2, \ldots, G_m such that $E(G) = \bigcup_{i=1}^m E(G_i)$ with $E(G_i) \cap E(G_j) = \emptyset$ for all $i \neq j$.

An *edge k-coloring* of a graph *G* is a function $\phi : E(G) \to \{1, 2, ..., k\}$ such that any two adjacent edges receive different colors. The *chromatic index*, denoted by $\chi'(G)$, of a graph *G* is the smallest integer *k* such that *G* has an edge *k*-coloring. Given an edge *k*-coloring ϕ of *G*, we use $C_{\phi}(v)$ to denote the set of colors assigned to those edges incident to a vertex *v*. The coloring ϕ is called a *neighbor-distinguishing edge coloring* (an NDE-coloring for short) if $C_{\phi}(u) \neq C_{\phi}(v)$ for any pair of adjacent vertices *u* and *v*. The *neighbor-distinguishing index* $\chi'_{a}(G)$ of a graph *G* is the smallest integer *k* such that *G* has a *k*-NDE-coloring. A graph *G* is normal if it contains no isolated edges. Clearly, *G* has an NDE-coloring if and only if *G* is normal. Thus, we always assume that *G* is normal in the following discussion.

By definition, it is easy to see that $\chi'_a(G) \geq \chi'(G) \geq \Delta(G)$ for any graph *G*. On the other hand, Zhang, Liu and Wang [13] proposed the following challenging conjecture, and confirmed its truth for paths, cycles, trees, complete graphs and complete bipartite graphs.

Conjecture 1. Every connected graph *G* with $|V(G)| \ge 6$ has $\chi'_a(G) \le \Delta(G) + 2$.

* Corresponding author. E-mail addresses: yqwang@bucm.edu.cn (Y. Wang), wwf@zjnu.cn (W. Wang).

http://dx.doi.org/10.1016/j.disc.2015.05.007 0012-365X/© 2015 Elsevier B.V. All rights reserved.

Balister et al. [2] affirmed Conjecture 1 for bipartite graphs and all graphs with $\Delta(G) = 3$. They also proved that $\chi'_a(G) \leq \Delta(G) + O(\log \chi(G))$, where $\chi(G)$ is the vertex chromatic number of the graph *G*. This result and Brooks' Theorem imply immediately that $\chi'_a(G) \leq 2\Delta(G)$ if $\Delta(G)$ is sufficiently large. Using probabilistic method, Hatami [4] showed that every graph *G* with $\Delta(G) > 10^{20}$ has $\chi'_a(G) \leq \Delta(G) + 300$. Akbari, Bidkhori and Nosrati [1] proved that every graph *G* satisfies $\chi'_a(G) \leq 3\Delta(G)$. Zhang, Wang and Lih [14] improved this bound to that $\chi'_a(G) \leq 2.5\Delta(G) + 5$ for any graph *G*. For planar graphs *G*, Horňák, Huang and Wang [6] showed that $\chi'_a(G) \leq \Delta(G) + 2$ if $\Delta(G) \geq 12$. More recently, Wang and Huang [9] further verified that if *G* is a planar graph with $\Delta(G) \geq 16$, then $\chi'_a(G) \leq \Delta(G) + 1$, and moreover $\chi'_a(G) = \Delta(G) + 1$ if and only if *G* contains two adjacent vertices of maximum degree. This result is an extension to the result in [3], which says that if *G* is a planar bipartite graph with $\Delta(G) \geq 12$, then $\chi'_a(G) \leq \Delta(G) + 1$. The reader is referred to [5,10–12] for other results on this direction.

In this paper, we investigate the neighbor-distinguishing index of some special graphs such as graphs with maximum degree 4 or 5 and semi-regular graphs. These results are applied to improve the upper bound of the neighbor-distinguishing index on general graphs. Here a graph *G* is called *semi-regular* if each edge of *G* is incident to at least one vertex of maximum degree. Clearly, a regular graph is a semi-regular graph, and not vice versa.

2. Graphs with $\Delta = 4$

This section is devoted to the study of the neighbor-distinguishing index of graphs with maximum degree 4.

Lemma 2.1 ([7]). If G is a 2k-regular graph with $k \ge 1$, then G is 2-factorizable.

It is well-known that, given a graph *G*, there exists a $\Delta(G)$ -regular graph *H* such that $G \subseteq H$. This fact, together with Lemma 2.1, implies that every graph *G* with $\Delta(G) = 4$ can be edge-partitioned into two subgraphs G_1 and G_2 such that $\Delta(G_i) \leq 2$ for i = 1, 2.

In order to prove the main result in this section, i.e., Theorem 2.5, we need the following three useful consequences:

Theorem 2.2 ([14]). If a normal graph G has an edge-partition into two normal subgraphs G_1 and G_2 , then $\chi'_a(G) \leq \chi'_a(G_1) + \chi'_a(G_2)$.

Theorem 2.3 ([13]). If *P* is a path of length at least two, then $\chi'_a(P) \leq 3$.

Theorem 2.4 ([2]). If G is a graph with $\Delta(G) \leq 3$, then $\chi'_a(G) \leq 5$.

Suppose that ϕ is a partial NDE-coloring of a graph *G* using a color set *C*. We call two adjacent vertices *u* and *v* conflict under ϕ (or simply conflict) if $C_{\phi}(u) = C_{\phi}(v)$. An edge *uv* is said to be *legally* colored if its color is different from that of its neighbors and no pair of conflict vertices is produced.

Theorem 2.5. If G is a graph with $\Delta(G) \leq 4$, then $\chi'_a(G) \leq 8$.

Proof. We prove the theorem by induction on the edge number |E(G)|. If $|E(G)| \le 8$, the theorem holds trivially. Let *G* be a graph with $\Delta(G) \le 4$ and $|E(G)| \ge 9$. If $\Delta(G) \le 3$, then the result follows from Theorem 2.4. So suppose that $\Delta(G) = 4$. The proof is split into the following cases, depending on the size of $\delta(G)$.

Case 1 $\delta(G) = 1$.

Let *x* be a 1-vertex adjacent to a vertex *y*. Let H = G - xy. Then *H* is a normal graph with $\Delta(H) \le 4$ and |E(H)| < |E(G)|. By the induction hypothesis, *H* has an 8-NDE-coloring ϕ using the color set $C = \{1, 2, ..., 8\}$. Note that $|C_{\phi}(y)| = d_H(y) = d_G(y) - 1 \le 3$ and *y* has at most $d_G(y) - 1 \le 3$ possible conflict vertices. Thus, *xy* has at most $|C_{\phi}(y)| + 3 \le 6$ forbidden colors when colored, we can color *xy* with a color in $C \setminus C_{\phi}(y)$ such that *y* does not conflict with its neighbors. So an 8-NDE-coloring of *G* is constructed.

Case 2
$$\delta(G) = 2$$
.

Let *x* be a 2-vertex with neighbors *y* and *z*. Without loss of generality, assume that $2 \le d_G(y) \le d_G(z) \le 4$. There are two possibilities to be handled.

Case 2.1 $d_G(y) = 2$.

Let w denote the neighbor of y other than x. Without loss of generality, we assume that $d_G(w) \ge 3$, for otherwise we may further consider the neighbor of w other than y until a desired vertex is found. Let H = G - wy. Then H is a normal graph with $\Delta(H) \le 4$ and |E(H)| < |E(G)|. By the induction hypothesis, H has an 8-NDE-coloring ϕ with the color set $C = \{1, 2, ..., 8\}$. We first remove the color of xy. Since w has at most three conflict vertices and y has at most one conflict vertex, we can color yw with a color $a \in C \setminus (C_{\phi}(w) \cup \{\phi(xz)\})$ and xy with a color in $C \setminus \{a, \phi(xz)\}$ such that neither of x, y, w conflicts with its neighbors.

Download English Version:

https://daneshyari.com/en/article/6423312

Download Persian Version:

https://daneshyari.com/article/6423312

Daneshyari.com