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a b s t r a c t

LetG be a graph on n vertices, which is an edge-disjoint union ofms-factors, that is, s regular
spanning subgraphs. Alspach first posed the problem that if there exists a matching M of
m edges with exactly one edge from each 2-factor. Such a matching is called orthogonal
because of applications in design theory. For s = 2, so far the best known result is due to
Stong in 2002,which states that if n ≥ 3m−2, then there is an orthogonalmatching. Anstee
and Caccetta also asked if there is amatchingM ofm edgeswith exactly one edge from each
s-factor? They answered yes for s ≥ 3. In this paper, we get a better bound and prove that if
s = 2 and n ≥ 2

√
2m+4.5 (note that 2

√
2 ≤ 2.825), then there is an orthogonalmatching.

We also prove that if s = 1 and n ≥ 3.2m−1, then there is an orthogonal matching, which
improves the previous bound (3.79m).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and notation

We use [4] for terminology and notations not defined here and consider simple undirected graphs only. Let G = (V , E)
be a graph. For a subgraph H of G, let |H| denote the order of H , i.e. the number of vertices of H and let ∥H∥ denote the size
of H , that is, the number of edges of H . If a vertex u is an end vertex of an edge e, we write u ∈ e.

LetG be a graph on n vertices, which is an edge-disjoint union ofms-factors, that is, s regular spanning subgraphs. In 1988,
Alspach [1] first posed the problem that if there exists a matching M of m edges with exactly one edge from each 2-factor.
Such a matching is called orthogonal because of applications in design theory. A matching M is suborthogonal if there is at
most one edge from each s-factor. Alspach, Heinrich and Liu [2] proved that the answer is affirmative if n ≥ 4m−5. Kouider
and Sotteau improved this bound to 3.23m. In 2002, Stong [17] further improved this bound and proved the following result.

Theorem 1.1 ([17]). Let G be a 2m-regular graph with n ≥ 3m − 2. Then for any decomposition of E(G) into m 2-factors
F1, F2, . . . , Fm, there is an orthogonal matching.

The problem with s = 2 and all the 2-factors being hamiltonian cycles was raised by Caccetta and Mardiyono [5] and
Chung (referred to in [12]) but apparently the extra condition is no help.

In 1998, Anstee and Caccetta [3] asked if there is a matching M of m edges with exactly one edge from each s-factor in
the cases of s = 1 and s ≥ 3? For s ≥ 3, the answer is yes (see [3]).

For s = 1, the answer is negative: let G be a complete graph Km+1 (m is even) which is an edge disjoint union of m
1-factors, however, the size of maximum matching is at most m

2 . Indeed, it is best possible, see [11]. But how about when
we restrict ourselves to large graph? Wang, Liu and Liu [20] proved the following result.
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Theorem 1.2 ([20]). Let G be an m-regular graph with n ≥ 3.79m. Then for any decomposition of E(G) into m 1-factors
F1, F2, . . . , Fm, there is an orthogonal matching.

In particular, if G is Km,m and is a union of m 1-factors F1, F2, . . . , Fm, then G corresponds to a Latin square, where entry
aij is l if edge (ui, vj) ∈ Fl. Now our desired matching corresponds to a transversal. Hatami and Shor [9] proved that if Km,m
is a union ofm 1-factors F1, F2, . . . , Fm, then there is a matchingM of p edges with at most one edge from any 1-factor with
p = m − O(logm)2.

IfG is assigned an arbitrary edge-coloring (not necessarily proper), thenwe say thatG is an edge-colored graph. A subgraph
H of an edge-colored graph G is called rainbow (also heterochromatic, multicolored, polychromatic) if its edges have distinct
colors. The minimum color degree of G is the smallest number of distinct colors on the edges incident with a vertex over
all vertices. Recently, the study of rainbow paths and cycles under minimum color degree condition has received much
attention, see [6,15]. For rainbow matchings under minimum color degree condition, see [11,10,16,13,14,19].

In any decomposition of E(G) into ms-factors, we can construct an edge-colored graph by giving each s-factor a color.
Then a rainbow matching of G corresponds to a suborthogonal matching of G. In particular, when s = 1, the edge-colored
graph obtained above is properly edge-colored. For rainbow matchings in properly edge-colored graphs, see [7,8,18,21].

In this paper, we improve the bounds in Theorems 1.1 and 1.2 and get the following results.

Theorem 1.3. Let G be an m-regular graph with n ≥ 3.2m − 1. Then for any decomposition of E(G) into m 1-factors F1, F2,
. . . , Fm, there is an orthogonal matching.

Theorem 1.4. Let G be a 2m-regular graph with n ≥ 2
√
2m + 4.5. Then for any decomposition of E(G) into m 2-factors

F1, F2, . . . , Fm, there is an orthogonal matching.

2. Proof of main results

Weprove our conclusions by contradiction. Firstly,whenm = 1 andm = 2, the proof is trivial. If Theorems 1.3 and 1.4 are
false, then there exists a minimalm, such that there is no a rainbowmatching of sizem for G. We construct an edge-colored
graph by giving each 1-factor (in Theorem 1.3), 2-factor (in Theorem 1.4) a color from {1, 2, . . . ,m}. For an edge e ∈ E(G),
let c(e) denote the color of e. For a subgraph H of G, let C(H) = {c(e) | e ∈ E(H)}. By the minimality of m, G has a rainbow
matching of size m − 1. For simplicity, let p = m − 1 and n = |G|. We define a good configuration Hp = M1 ∪ M2 ∪ M3 ∪ F
as follows (see Fig. 1) . Note that the blue edges in the figure are coloredm.

(a) For some integer k ≥ 0, M1 = {ei (ei = uivi) : i = 1, 2, . . . , k} and M2 = {fi : i = 1, 2, . . . , k} are two vertex-disjoint
rainbow matchings of Gwith c(ei) = c(fi).

(b) M3 = {gi (gi = uivi) : i = k + 1, . . . , p} is a rainbowmatching, which is vertex-disjoint fromM1 ∪ M2 and c(gi) ≠ c(ej)
for 1 ≤ j ≤ k < i ≤ p.

For abbreviation, let G1 denote the subgraph induced by V (G)\V (M1 ∪ M2 ∪ M3). Without loss of generality, we
assume that C(M1 ∪ M3) = {1, 2, . . . ,m − 1}.

(c) F = {hi (hi = vizi) : i = k + 1, . . . , k + t} is a matching, vertex-disjoint from M1 ∪ M2, hi ∩ M3 = {vi} ∈ gi, and
c(hi) = m.

We choose a good configuration Hp = M1 ∪ M2 ∪ M3 ∪ F satisfying the following conditions:

(1) k = ∥M1∥ is maximum;
(2) subject to (1), F is maximal, that is, F covers the maximum number of vertices ofM3.

Claim 2.1. If u ∈ V (G1) and c(uv) = m, then v ∈ V (M3).

Proof. By symmetry, we may assume that v ∉ V (M2). If v ∉ V (M3), then M2 ∪ M3 ∪ uv is an orthogonal matching of G,
which is a contradiction. �

Claim 2.2. If u ∈ V (ei ∪ fi) and c(uv) = m, where v ∉ V (M3), then v ∈ V (ei ∪ fi).

Proof. Suppose to the contrary that v ∉ V (ei ∪ fi). By symmetry and without loss of generality, we may assume that
u, v ∉ V (M2). Since c(uv) = m,M2 ∪ M3 ∪ uv is an orthogonal matching, which is a contradiction. �

If there is an edge uv such that u, v ∈ V (ei ∪ fi) and c(uv) = m, then we call ei ∪ fi a nice pair. Let q denote the number
of nice pairs inM1 ∪M2. Without loss of generality, we assume that the nice pairs are {e1 ∪ f1, . . . , eq ∪ fq} and we call c(ei)
a nice color, for i = 1, 2, . . . , q. Let n1 be the number of edges uv such that u ∈ V (M3), v ∈ V (G)\V (M3) and c(uv) = m.
Note that each vertex is incident with at least one edge with colorm since each color induces a 1-factor (in Theorem 1.3) or
2-factor (in Theorem 1.4).

Claim 2.3. We have that V (Hp) = V (G).
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