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a b s t r a c t

Motivated by recent extensive studies on Wenger graphs, we introduce a new infinite
class of bipartite graphs of a similar type, called linearized Wenger graphs. The spectrum,
diameter and girth of these linearized Wenger graphs are determined.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let Fq be a finite field of order q such that p is prime and q = pe a prime power. All graph theory notions
can be found in Bollobás [1]. Recently, a class of bipartite graphs called Wenger graphs which are defined over Fq
has attracted a lot of attention because of their nice graphical properties [2,6,7,12–16]. For example, the number of
edges of these graphs meets asymptotically in magnitude the upper bounds of Turán number of the cycle with length
4, 6, 10 [16]. The original definition was introduced by Wenger [16] for p-regular bipartite graphs and then was extended
by Lazebnik and Ustimenko [6] for arbitrary prime power q. An equivalent representation of these graphs appeared later
in Lazebnik and Viglione [9] and then a more general class of graphs was defined in [14], on which we concentrate in this
paper.

Let m ≥ 1 be a positive integer and gk(x, y) ∈ Fq[x, y] for 2 ≤ k ≤ m + 1. Let P = Fm+1
q and L = Fm+1

q be two copies of
the (m + 1)-dimensional vector space over Fq, which are called the point set and the line set respectively. If a ∈ Fm+1

q , then
we write (a) ∈ P and [a] ∈ L. Let G = Gq(g2, . . . , gm+1) = (V , E) be the bipartite graph with vertex set V = P ∪ L and the
edge set E is defined as follows: there is an edge from a point P = (p1, p2, . . . , pm+1) ∈ P to a line L = [l1, l2, . . . , lm+1] ∈ L,
denoted by P ∼ L, if the followingm equalities hold:

l2 + p2 = g2(p1, l1)
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l3 + p3 = g3(p1, l1)

... (1.1)
lm+1 + pm+1 = gm+1(p1, l1).

If gk(x, y), k = 2, . . . ,m + 1, are all monomials, the graph is called a monomial graph; see [3]. If gk(x, y) = xk−1y, k =

2, . . . ,m + 1, then the graph is just the original Wenger graph in [2], also denoted by Wm(q). It was shown in [6] that the
automorphism group of Wm(q) acts transitively on each of P and L, and on the set of edges of Wm(q). In other words, the
graphs Wm(q) are point-, line-, and edge-transitive. It is also shown that, see [7], W1(q) is vertex-transitive for all q, and
that W2(q) is vertex-transitive for even q. For all m ≥ 3 and q ≥ 3, and for m = 2 and all odd q, the graphs Wm(q) are not
vertex-transitive. Another result of [7] is that Wm(q) is connected when 1 ≤ m ≤ q − 1, and disconnected when m ≥ q, in
which case it has qm−q+1 components, each isomorphic to Wq−1(q). In [15], Viglione proved that the diameter of Wm(q) is
2m + 2 when 1 ≤ m ≤ q − 1. In [2], Cioabă, Lazebnik and Li determined the spectrum ofWm(q).

In this paperwe focus on the basic properties of some extensions ofWenger graphs defined as in Eq. (1.1). In Section 2we
first study the spectrumof a general class of graphs such that polynomials gk(x, y) ∈ Fq[x, y] are defined by gk(x, y) = fk(x)y,
and the mapping ϑ : Fq → Fm+1

q ; u → (1, f2(u), . . . , fm+1(u)) is injective. The eigenvalues of such a graph are
determined, however, their multiplicities are reduced to counting certain polynomials with a given number of roots over
finite fields. The latter problem is an interesting number theoretical problem, which is expected to be difficult in general.
A complete solution in interesting special cases is already significant. In particular, we introduce a new class of bipartite
graphs called linearized Wenger graphs. These graphs are denoted by Lm(q), which are defined by Eq. (1.1) together with
gk(x, y) = xp

k−2
y, k = 2, . . . ,m + 1, and so fk(x) = xp

k−2
. Using results on linearized polynomials over finite fields, we are

able to explicitly determine the spectrum of such graphs whenm ≥ e in Section 3. Finally we obtain the diameter and girth
of linearized Wenger graphs in Section 4 and Section 5, respectively. As a consequence, when m = e, this provides a new
class of infinitely many connected q-regular expander graphs of q2m+2 vertices with optimal diameter 2(m+1)when q goes
to infinity.

2. The spectrum of general Wenger graphs

In this section we study the basic properties of the class of graphs G defined by gk(x, y) = fk(x)y, where gk(x, y) is a
product of a polynomial in terms of x and the linear polynomial y, for 2 ≤ k ≤ m + 1. The approach taken in this section
follows closely the one in [2].

The following result is proven in much greater generality in [8]. We provide a proof to make the presentation self-
contained.

Proposition 2.1. The graph G = Gq(f2(x)y, . . . , fm+1(x)y) is q-regular.

Proof. Given a point P and a line L in V , by definition, P = (p1, p2, . . . , pm+1) is adjacent to L = [l1, l2, . . . , lm+1] if and only
if the followingm equalities hold:

l2 + p2 = f2(p1)l1
l3 + p3 = f3(p1)l1
...
lm+1 + pm+1 = fm+1(p1)l1.

(2.1)

When the point P is prescribed, (2.1) implies that one can uniquely solve lk (k ≥ 2) from l1, and thus (2.1) has q solutions.
Similarly, when the point L is prescribed, (2.1) implies that one can uniquely solve pk (k ≥ 2) from p1, and thus (2.1) has q
solutions. �

Since G is a bipartite graph, its adjacency matrix is of the form:

A =


0 N
NT 0


with a matrix N and

A2
=


NNT 0
0 NTN


. (2.2)

In order to consider the properties of G, we define a graph H as follows: the vertex set is Fm+1
q containing all lines in G,

any two lines L = [l1, l2, . . . , lm+1] and L′
= [l′1, l

′

2, . . . , l
′

m+1] are adjacent if and only if they share a common neighbor point
P = (p1, p2, . . . , pm+1) in the graph G defined above.
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