Linearized Wenger graphs

Xiwang Cao ${ }^{\text {a }}$, Mei Lu ${ }^{\text {b }}$, Daqing Wan ${ }^{\text {c }}$, Li-Ping Wang ${ }^{\text {d,* }, ~ Q i a n g ~ W a n g ~}{ }^{\mathrm{e}}$
a School of Mathematical Sciences, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
${ }^{\text {c }}$ Department of Mathematics, University of California, Irvine, CA 92697-3875, USA
${ }^{\text {d }}$ Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
${ }^{\mathrm{e}}$ School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada

ARTICLE INFO

Article history:
Received 30 November 2014
Received in revised form 2 April 2015
Accepted 6 April 2015
Available online 29 April 2015

Keywords:

Cayley graph
Graph spectrum
Expander
Diameter
Girth
Algebraic graph theory

Abstract

Motivated by recent extensive studies on Wenger graphs, we introduce a new infinite class of bipartite graphs of a similar type, called linearized Wenger graphs. The spectrum, diameter and girth of these linearized Wenger graphs are determined.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let \mathbb{F}_{q} be a finite field of order q such that p is prime and $q=p^{e}$ a prime power. All graph theory notions can be found in Bollobás [1]. Recently, a class of bipartite graphs called Wenger graphs which are defined over \mathbb{F}_{q} has attracted a lot of attention because of their nice graphical properties [2,6,7,12-16]. For example, the number of edges of these graphs meets asymptotically in magnitude the upper bounds of Turán number of the cycle with length $4,6,10$ [16]. The original definition was introduced by Wenger [16] for p-regular bipartite graphs and then was extended by Lazebnik and Ustimenko [6] for arbitrary prime power q. An equivalent representation of these graphs appeared later in Lazebnik and Viglione [9] and then a more general class of graphs was defined in [14], on which we concentrate in this paper.

Let $m \geq 1$ be a positive integer and $g_{k}(x, y) \in \mathbb{F}_{q}[x, y]$ for $2 \leq k \leq m+1$. Let $\mathfrak{P}=\mathbb{F}_{q}^{m+1}$ and $\mathfrak{L}=\mathbb{F}_{q}^{m+1}$ be two copies of the $(m+1)$-dimensional vector space over \mathbb{F}_{q}, which are called the point set and the line set respectively. If $a \in \mathbb{F}_{q}^{m+1}$, then we write $(a) \in \mathfrak{P}$ and $[a] \in \mathfrak{L}$. Let $\mathfrak{G}=G_{q}\left(g_{2}, \ldots, g_{m+1}\right)=(V, E)$ be the bipartite graph with vertex set $V=\mathfrak{P} \cup \mathfrak{L}$ and the edge set E is defined as follows: there is an edge from a point $P=\left(p_{1}, p_{2}, \ldots, p_{m+1}\right) \in \mathfrak{P}$ to a line $L=\left[l_{1}, l_{2}, \ldots, l_{m+1}\right] \in \mathfrak{L}$, denoted by $P \sim L$, if the following m equalities hold:

$$
l_{2}+p_{2}=g_{2}\left(p_{1}, l_{1}\right)
$$

[^0]\[

$$
\begin{align*}
& l_{3}+p_{3}=g_{3}\left(p_{1}, l_{1}\right) \\
& \vdots \tag{1.1}\\
& l_{m+1}+p_{m+1}=g_{m+1}\left(p_{1}, l_{1}\right)
\end{align*}
$$
\]

If $g_{k}(x, y), k=2, \ldots, m+1$, are all monomials, the graph is called a monomial graph; see [3]. If $g_{k}(x, y)=x^{k-1} y, k=$ $2, \ldots, m+1$, then the graph is just the original Wenger graph in [2], also denoted by $W_{m}(q)$. It was shown in [6] that the automorphism group of $W_{m}(q)$ acts transitively on each of \mathfrak{P} and \mathfrak{L}, and on the set of edges of $W_{m}(q)$. In other words, the graphs $W_{m}(q)$ are point-, line-, and edge-transitive. It is also shown that, see [7], $W_{1}(q)$ is vertex-transitive for all q, and that $W_{2}(q)$ is vertex-transitive for even q. For all $m \geq 3$ and $q \geq 3$, and for $m=2$ and all odd q, the graphs $W_{m}(q)$ are not vertex-transitive. Another result of [7] is that $W_{m}(q)$ is connected when $1 \leq m \leq q-1$, and disconnected when $m \geq q$, in which case it has q^{m-q+1} components, each isomorphic to $W_{q-1}(q)$. In [15], Viglione proved that the diameter of $W_{m}(q)$ is $2 m+2$ when $1 \leq m \leq q-1$. In [2], Cioabă, Lazebnik and Li determined the spectrum of $W_{m}(q)$.

In this paper we focus on the basic properties of some extensions of Wenger graphs defined as in Eq. (1.1). In Section 2 we first study the spectrum of a general class of graphs such that polynomials $g_{k}(x, y) \in \mathbb{F}_{q}[x, y]$ are defined by $g_{k}(x, y)=f_{k}(x) y$, and the mapping $\vartheta: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}^{m+1} ; u \mapsto\left(1, f_{2}(u), \ldots, f_{m+1}(u)\right)$ is injective. The eigenvalues of such a graph are determined, however, their multiplicities are reduced to counting certain polynomials with a given number of roots over finite fields. The latter problem is an interesting number theoretical problem, which is expected to be difficult in general. A complete solution in interesting special cases is already significant. In particular, we introduce a new class of bipartite graphs called linearized Wenger graphs. These graphs are denoted by $L_{m}(q)$, which are defined by Eq. (1.1) together with $g_{k}(x, y)=x^{p^{k-2}} y, k=2, \ldots, m+1$, and so $f_{k}(x)=x^{p^{k-2}}$. Using results on linearized polynomials over finite fields, we are able to explicitly determine the spectrum of such graphs when $m \geq e$ in Section 3 . Finally we obtain the diameter and girth of linearized Wenger graphs in Section 4 and Section 5, respectively. As a consequence, when $m=e$, this provides a new class of infinitely many connected q-regular expander graphs of $q^{2 m+2}$ vertices with optimal diameter $2(m+1)$ when q goes to infinity.

2. The spectrum of general Wenger graphs

In this section we study the basic properties of the class of graphs \mathfrak{G} defined by $g_{k}(x, y)=f_{k}(x) y$, where $g_{k}(x, y)$ is a product of a polynomial in terms of x and the linear polynomial y, for $2 \leq k \leq m+1$. The approach taken in this section follows closely the one in [2].

The following result is proven in much greater generality in [8]. We provide a proof to make the presentation selfcontained.

Proposition 2.1. The graph $\mathfrak{G}=G_{q}\left(f_{2}(x) y, \ldots, f_{m+1}(x) y\right)$ is q-regular.
Proof. Given a point P and a line L in V, by definition, $P=\left(p_{1}, p_{2}, \ldots, p_{m+1}\right)$ is adjacent to $L=\left[l_{1}, l_{2}, \ldots, l_{m+1}\right]$ if and only if the following m equalities hold:

$$
\left\{\begin{array}{l}
l_{2}+p_{2}=f_{2}\left(p_{1}\right) l_{1} \tag{2.1}\\
l_{3}+p_{3}=f_{3}\left(p_{1}\right) l_{1} \\
\vdots \\
l_{m+1}+p_{m+1}=f_{m+1}\left(p_{1}\right) l_{1}
\end{array}\right.
$$

When the point P is prescribed, (2.1) implies that one can uniquely solve $l_{k}(k \geq 2)$ from l_{1}, and thus (2.1) has q solutions. Similarly, when the point L is prescribed, (2.1) implies that one can uniquely solve $p_{k}(k \geq 2)$ from p_{1}, and thus (2.1) has q solutions.

Since \mathfrak{G} is a bipartite graph, its adjacency matrix is of the form:

$$
A=\left(\begin{array}{cc}
0 & N \\
N^{T} & 0
\end{array}\right)
$$

with a matrix N and

$$
A^{2}=\left(\begin{array}{cc}
N N^{T} & 0 \tag{2.2}\\
0 & N^{T} N
\end{array}\right)
$$

In order to consider the properties of \mathfrak{G}, we define a graph H as follows: the vertex set is \mathbb{F}_{q}^{m+1} containing all lines in \mathfrak{G}, any two lines $L=\left[l_{1}, l_{2}, \ldots, l_{m+1}\right]$ and $L^{\prime}=\left[l_{1}^{\prime}, l_{2}^{\prime}, \ldots, l_{m+1}^{\prime}\right]$ are adjacent if and only if they share a common neighbor point $P=\left(p_{1}, p_{2}, \ldots, p_{m+1}\right)$ in the graph \mathfrak{G} defined above.

https://daneshyari.com/en/article/6423353

Download Persian Version:
https://daneshyari.com/article/6423353

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: xwcao@nuaa.edu.cn (X. Cao), mlu@math.tsinghua.edu.cn (M. Lu), dwan@math.uci.edu (D. Wan), wangliping@iie.ac.cn (L.-P. Wang), wang@math.carleton.ca (Q. Wang).

