The Ramsey numbers of wheels versus odd cycles

Yanbo Zhang, Yunqing Zhang, Yaojun Chen *
Department of Mathematics, Nanjing University, Nanjing 210093, PR China

ARTICLE INFO

Article history:

Received 15 January 2013
Received in revised form 18 September 2013
Accepted 24 January 2014
Available online 7 February 2014

Keywords:

Ramsey number
Cycle
Wheel

Abstract

Given two graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer N such that for any graph G of order N, either G contains G_{1} or its complement contains G_{2}. Let C_{m} denote a cycle of order m and W_{n} a wheel of order $n+1$. In this paper, it is shown that $R\left(W_{n}, C_{m}\right)=2 n+1$ for m odd, $n \geq 3(m-1) / 2$ and $(m, n) \neq(3,3),(3,4)$, and $R\left(W_{n}, C_{m}\right)=3 m-2$ for m, n odd and $m<n \leq 3(m-1) / 2$. © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

We are here concerned with finite simple graphs. Given two graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer N such that, for any graph G of order N, either G contains G_{1} or \bar{G} contains G_{2}, where \bar{G} is the complement of G. Let $G=(V(G), E(G))$ and $e(G)=|E(G)|$. For $S \subseteq V(G)$, let $G[S]$ and $G-S$ denote the subgraph induced by S and $V(G)-S$, respectively. Moreover, $N_{S}(v)$ and $d_{S}(v)$ are the set and the number of the neighbors of a vertex v contained in S, respectively. If $S=V(G)$, we write $N(v)=N_{G}(v), N[v]=N(v) \cup\{v\}$ and $d(v)=d_{G}(v)$. For $V_{1}, V_{2} \subseteq V(G)$, we use $V_{1}-V_{2}$ to denote the vertices contained in V_{1} but not in $V_{2}, E\left(V_{1}, V_{2}\right)$ the set of edges between V_{1} and V_{2} and $e\left(V_{1}, V_{2}\right)=\left|E\left(V_{1}, V_{2}\right)\right|$. A cycle and a path of order m are denoted by C_{m} and P_{m}, respectively. An (x, y)-path is a path from x to y. We denote by \vec{C} the cycle C with a given orientation, and by \overleftarrow{C} the cycle C with the reverse orientation. If $u, v \in V(C)$ then $u \vec{C} v$ denotes the consecutive vertices of C from u to v in the direction specified by \vec{C}. We use K_{n} to denote a complete graph of order n and $K_{l_{1}, l_{2}, \ldots, l_{k}}$ a complete k-partite graph of order $\sum_{i=1}^{k} l_{i}$. A wheel $W_{n}=K_{1}+C_{n}$ is a graph of order $n+1$. The minimum degree, maximum degree and independence number of G are denoted by $\delta(G), \Delta(G)$ and $\alpha(G)$, respectively. We use $m G$ to denote m vertex disjoint copies of G. The lengths of the longest and shortest cycles of G are denoted by $c(G)$ and $g(G)$, respectively. A graph G of order n is called Hamiltonian, pancyclic and weakly pancyclic if it contains C_{n}, cycles of every length between 3 and n and cycles of every length l with $g(G) \leq l \leq c(G)$, respectively.

In [3], Burr defined a connected graph F to be H-good, if

$$
R(F, H)=(|F|-1)(\chi(H)-1)+s(H) \text { for }|F| \geq s(H),
$$

where $\chi(H)$ denotes the chromatic number of H and $s(H)$ the chromatic surplus of H, i.e., the minimum number of vertices in some color class under all proper vertex colorings by $\chi(H)$ colors.

For the cycle-wheel Ramsey number, Burr and Erdős first proved that W_{n} is C_{3}-good when $n \geq 5$, which was the first paper involving the pair of a cycle and a wheel.

[^0]Theorem 1 (Burr and Erdős [4]). $R\left(W_{n}, C_{3}\right)=2 n+1$ for $n \geq 5$.
Surahmat et al. [13,14] conjectured that C_{m} is W_{n}-good if $m \geq n$ and $(m, n) \neq(3,3),(4,4)$ and got the following result.
Theorem 2 (Surahmat et al. [13,14]). $R\left(C_{m}, W_{n}\right)=2 m-1$ for even n and $m \geq 5 n / 2-1$, and $R\left(C_{m}, W_{n}\right)=3 m-2$ for odd $n \geq 5$ and $m>(5 n-9) / 2$.

Chen et al. [5] showed that the range in Theorem 2 can be improved to $m \geq 3 n / 2+1$ for even $n \geq 4$ and established the following.

Theorem 3 (Chen et al. [5]). $R\left(C_{m}, W_{n}\right)=2 m-1$ even $n \geq 4$ and $m \geq 3 n / 2+1$.
By discussing the relations between the size and the weakly pancyclic property in a graph and its complement, Chen et al. [6] also determined that C_{m} is W_{n}-good for odd $n, m \geq n \geq 3$ and $(m, n) \neq(3,3)$.

Theorem 4 (Chen et al. [6]). $R\left(C_{m}, W_{n}\right)=3 m-2$ for odd $n, m \geq n \geq 3$ and $(m, n) \neq(3,3)$.
In the case when $m \leq n-1$, Zhou [16] showed that W_{n} is C_{m}-good if m is odd and $n \geq 5 m-7$. Unfortunately, the correctness of the proof is questionable since the author did not give the proofs for the two key claims in the paper. Recently, Sun and Chen [12] considered the wheels which are C_{5}-good and obtained the following.

Theorem 5 (Sun and Chen [12]). $R\left(W_{n}, C_{5}\right)=2 n+1$ for $n \geq 6$.
Up to now, whether W_{n} is C_{m}-good for odd $m>5$ is still open. Other results on Ramsey numbers of cycles versus wheels can be found in the dynamic survey [11]. In this paper, we determine the values of $R\left(W_{n}, C_{m}\right)$ for odd m in a more general situation. The main results of this paper are as follows.

Theorem 6. $R\left(W_{n}, C_{m}\right)=2 n+1$ for m odd, $n \geq 3(m-1) / 2$ and $(m, n) \neq(3,3),(3,4)$.
Theorem 7. $R\left(W_{n}, C_{m}\right)=3 m-2$ for m, n odd and $m<n \leq 3(m-1) / 2$.
Clearly, Theorem 6 says that W_{n} is C_{m}-good for odd $m \geq 3, n \geq 3(m-1) / 2$ and $(m, n) \neq(3,3),(3,4)$, and Theorem 7 shows that C_{m} is W_{n}-good for odd m, n and $m<n \leq 3(m-1) / 2$.

2. Preliminary lemmas

In order to prove Theorems 6 and 7, we need the following lemmas.
Lemma 1 (Brandt [1]). Every nonbipartite graph G of order n with $e(G)>(n-1)^{2} / 4+1$ is weakly pancyclic with $g(G)=3$.
Lemma 2 (Brandt et al. [2]). Every nonbipartite graph G of order n with $\delta(G) \geq(n+2) / 3$ is weakly pancyclic with $g(G)=3$ or 4 .
Lemma 3 (Dirac [7]). Let G be a simple graph of order $n \geq 3$. If $\delta(G) \geq n / 2$, then G is Hamiltonian.
Lemma 4 (Dirac [7]). Let G be a graph with $\delta(G) \geq 2$, then $c(G) \geq \delta(G)+1$.
Lemma 5 (Erdős and Gallai [8]). Let G be a graph of order n and $3 \leq c \leq n$. If $e(G) \geq(c-1)(n-1) / 2+1$, then $c(G) \geq c$.
Lemma 6 (Faudree et al. [9]). Let G be a graph of order $n \geq 6$. Then $\max \{c(G), c(\bar{G})\} \geq\lceil 2 n / 3\rceil$.
Lemma 7 (Lawrence [10]). $R\left(C_{m}, K_{1, n}\right)=m$ for $m \geq 2 n$.
Lemma 8. Let C be a longest cycle of a graph G and $v_{1}, v_{2} \in V(G)-V(C)$. Then $\left|N_{C}\left(v_{1}\right) \cup N_{C}\left(v_{2}\right)\right| \leq\lfloor|C| / 2\rfloor+1$.
Proof. Let $C=u_{1} u_{2} \cdots u_{l} u_{1}$. If there exist $u_{i} u_{i+1}, u_{j} u_{j+1}, u_{k} u_{k+1} \in E(C)$ with $i<j<k$ such that $u_{i}, u_{i+1}, u_{j}, u_{j+1}, u_{k}, u_{k+1} \in$ $N_{C}\left(v_{1}\right) \cup N_{C}\left(v_{2}\right)$, where the subscripts are taken modulo l, then v_{1} or v_{2} has at least two neighbors in $\left\{u_{i}, u_{j}, u_{k}\right\}$. By symmetry, we may assume that $u_{i}, u_{j} \in N_{C}\left(v_{1}\right)$. By the maximality of $C, u_{i+1}, u_{j+1} \notin N_{C}\left(v_{1}\right)$ which implies that $u_{i+1}, u_{j+1} \in N_{C}\left(v_{2}\right)$. Thus, $v_{1} u_{j} \overleftarrow{C} u_{i+1} v_{2} u_{j+1} \vec{C} u_{i} v_{1}$ is cycle of length longer than C, a contradiction. Therefore, C has at most two edges whose ends are contained in $N_{C}\left(v_{1}\right) \cup N_{C}\left(v_{2}\right)$, and hence $\left|N_{C}\left(v_{1}\right) \cup N_{C}\left(v_{2}\right)\right| \leq\lfloor|C| / 2\rfloor+1$.

Lemma 9. Let $m \geq 5$ be an odd integer and (X, Y) a partition of $V(G)$ of a graph G such that $|Y| \geq(m+1) / 2$ and $\left|X-\left(N\left(y_{i}\right) \cup N\left(y_{j}\right)\right)\right| \geq(m-1) / 2$ for any $y_{i}, y_{j} \in Y$. If \bar{G} contains no C_{m}, then $G[Y]$ is a complete graph.
Proof. Set $Y=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$ and $l=(m+1) / 2$, then $k \geq l$. If $G[Y]$ is not a complete graph, say, $y_{1} y_{2} \notin E(G)$, then since $\left|X-\left(N\left(y_{i}\right) \cup N\left(y_{j}\right)\right)\right| \geq(m-1) / 2$ for any $y_{i}, y_{j} \in Y$, we can choose $x_{1}, x_{2}, \ldots, x_{l-1} \in X$ such that $y_{i}, y_{i+1} \notin N\left(x_{i-1}\right)$ for $i=2, \ldots, l-1$ and $y_{1}, y_{l} \notin N\left(x_{l-1}\right)$, which implies that $y_{1} y_{2} x_{1} y_{3} x_{2} y_{4} \cdots x_{l-2} y_{l} x_{l-1} y_{1}$ is C_{m} in \bar{G}, a contradiction.

https://daneshyari.com/en/article/6423375

Download Persian Version:

https://daneshyari.com/article/6423375

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: yaojunc@nju.edu.cn (Y. Chen).
 http://dx.doi.org/10.1016/j.disc.2014.01.017
 0012-365X/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/3.0/).

