

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

The Ramsey numbers of wheels versus odd cycles

Yanbo Zhang, Yunqing Zhang, Yaojun Chen*

Department of Mathematics, Nanjing University, Nanjing 210093, PR China

ARTICLE INFO

Article history:
Received 15 January 2013
Received in revised form 18 September 2013
Accepted 24 January 2014
Available online 7 February 2014

Keywords: Ramsey number Cycle Wheel

ABSTRACT

Given two graphs G_1 and G_2 , the Ramsey number $R(G_1,G_2)$ is the smallest integer N such that for any graph G of order N, either G contains G_1 or its complement contains G_2 . Let C_m denote a cycle of order m and W_n a wheel of order n+1. In this paper, it is shown that $R(W_n,C_m)=2n+1$ for m odd, $n\geq 3(m-1)/2$ and $(m,n)\neq (3,3),(3,4)$, and $R(W_n,C_m)=3m-2$ for m, n odd and $m< n\leq 3(m-1)/2$.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

We are here concerned with finite simple graphs. Given two graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the smallest integer N such that, for any graph G of order N, either G contains G_1 or \overline{G} contains G_2 , where \overline{G} is the complement of G. Let G = (V(G), E(G)) and e(G) = |E(G)|. For $S \subseteq V(G)$, let G[S] and G - S denote the subgraph induced by S and V(G) - S, respectively. Moreover, $N_S(v)$ and $d_S(v)$ are the set and the number of the neighbors of a vertex v contained in S, respectively. If S = V(G), we write $N(v) = N_G(v)$, $N[v] = N(v) \cup \{v\}$ and $d(v) = d_G(v)$. For $V_1, V_2 \subseteq V(G)$, we use $V_1 - V_2$ to denote the vertices contained in V_1 but not in V_2 , $E(V_1, V_2)$ the set of edges between V_1 and V_2 and $e(V_1, V_2) = |E(V_1, V_2)|$. A cycle and a path of order m are denoted by C_m and C_m , respectively. An C_m contains a path from C_m to C_m denote by C_m denote the consecutive vertices of C_m from C_m to C_m in the direction specified by C_m . We use C_m to denote a complete graph of order C_m and C_m and C_m and C_m and C_m and C_m are denoted by C_m and C_m are denoted by C_m and C_m are denoted by C_m and C_m and C_m are denoted by C_m and C_m and C_m are denoted by C_m an

In [3], Burr defined a connected graph F to be H-good, if

$$R(F, H) = (|F| - 1)(\chi(H) - 1) + s(H)$$
 for $|F| \ge s(H)$,

where $\chi(H)$ denotes the chromatic number of H and s(H) the chromatic surplus of H, i.e., the minimum number of vertices in some color class under all proper vertex colorings by $\chi(H)$ colors.

For the cycle-wheel Ramsey number, Burr and Erdős first proved that W_n is C_3 -good when $n \geq 5$, which was the first paper involving the pair of a cycle and a wheel.

E-mail address: yaojunc@nju.edu.cn (Y. Chen).

^{*} Corresponding author.

Theorem 1 (Burr and Erdős [4]). $R(W_n, C_3) = 2n + 1$ for n > 5.

Surahmat et al. [13,14] conjectured that C_m is W_n -good if $m \ge n$ and $(m, n) \ne (3, 3)$, (4, 4) and got the following result.

Theorem 2 (Surahmat et al. [13,14]). $R(C_m, W_n) = 2m - 1$ for even n and $m \ge 5n/2 - 1$, and $R(C_m, W_n) = 3m - 2$ for odd $n \ge 5$ and m > (5n - 9)/2.

Chen et al. [5] showed that the range in Theorem 2 can be improved to $m \ge 3n/2 + 1$ for even $n \ge 4$ and established the following.

Theorem 3 (*Chen et al.* [5]). $R(C_m, W_n) = 2m - 1$ even $n \ge 4$ and $m \ge 3n/2 + 1$.

By discussing the relations between the size and the weakly pancyclic property in a graph and its complement, Chen et al. [6] also determined that C_m is W_n -good for odd $n, m \ge n \ge 3$ and $(m, n) \ne (3, 3)$.

Theorem 4 (*Chen et al.* [6]). $R(C_m, W_n) = 3m - 2$ for odd $n, m \ge n \ge 3$ and $(m, n) \ne (3, 3)$.

In the case when $m \le n-1$, Zhou [16] showed that W_n is C_m -good if m is odd and $n \ge 5m-7$. Unfortunately, the correctness of the proof is questionable since the author did not give the proofs for the two key claims in the paper. Recently, Sun and Chen [12] considered the wheels which are C_5 -good and obtained the following.

Theorem 5 (Sun and Chen [12]). $R(W_n, C_5) = 2n + 1$ for $n \ge 6$.

Up to now, whether W_n is C_m -good for odd m > 5 is still open. Other results on Ramsey numbers of cycles versus wheels can be found in the dynamic survey [11]. In this paper, we determine the values of $R(W_n, C_m)$ for odd m in a more general situation. The main results of this paper are as follows.

Theorem 6. $R(W_n, C_m) = 2n + 1$ for m odd, $n \ge 3(m-1)/2$ and $(m, n) \ne (3, 3), (3, 4)$.

Theorem 7. $R(W_n, C_m) = 3m - 2$ for m, n odd and m < n < 3(m-1)/2.

Clearly, Theorem 6 says that W_n is C_m -good for odd $m \ge 3$, $n \ge 3(m-1)/2$ and $(m,n) \ne (3,3)$, (3,4), and Theorem 7 shows that C_m is W_n -good for odd m, n and $m < n \le 3(m-1)/2$.

2. Preliminary lemmas

In order to prove Theorems 6 and 7, we need the following lemmas.

Lemma 1 (Brandt [1]). Every nonbipartite graph G of order n with $e(G) > (n-1)^2/4 + 1$ is weakly pancyclic with g(G) = 3.

Lemma 2 (Brandt et al. [2]). Every nonbipartite graph G of order n with $\delta(G) > (n+2)/3$ is weakly pancyclic with g(G) = 3 or 4.

Lemma 3 (*Dirac* [7]). Let G be a simple graph of order $n \ge 3$. If $\delta(G) \ge n/2$, then G is Hamiltonian.

Lemma 4 (Dirac [7]). Let G be a graph with $\delta(G) \geq 2$, then $c(G) \geq \delta(G) + 1$.

Lemma 5 (Erdős and Gallai [8]). Let G be a graph of order n and $3 \le c \le n$. If $e(G) \ge (c-1)(n-1)/2 + 1$, then $c(G) \ge c$.

Lemma 6 (Faudree et al. [9]). Let G be a graph of order $n \ge 6$. Then $\max\{c(G), c(\overline{G})\} \ge \lceil 2n/3 \rceil$.

Lemma 7 (*Lawrence* [10]). $R(C_m, K_{1.n}) = m$ for $m \ge 2n$.

Lemma 8. Let C be a longest cycle of a graph G and $v_1, v_2 \in V(G) - V(C)$. Then $|N_C(v_1) \cup N_C(v_2)| \le \lfloor |C|/2 \rfloor + 1$.

Proof. Let $C = u_1u_2 \cdots u_iu_1$. If there exist $u_iu_{i+1}, u_ju_{j+1}, u_ku_{k+1} \in E(C)$ with i < j < k such that $u_i, u_{i+1}, u_j, u_{j+1}, u_k, u_{k+1} \in N_C(v_1) \cup N_C(v_2)$, where the subscripts are taken modulo l, then v_1 or v_2 has at least two neighbors in $\{u_i, u_j, u_k\}$. By symmetry, we may assume that $u_i, u_j \in N_C(v_1)$. By the maximality of C, $u_{i+1}, u_{j+1} \not\in N_C(v_1)$ which implies that $u_{i+1}, u_{j+1} \in N_C(v_2)$. Thus, $v_1u_j \overset{\leftarrow}{C} u_{i+1}v_2u_{j+1} \overset{\leftarrow}{C} u_iv_1$ is cycle of length longer than C, a contradiction. Therefore, C has at most two edges whose ends are contained in $N_C(v_1) \cup N_C(v_2)$, and hence $|N_C(v_1) \cup N_C(v_2)| \le \lfloor |C|/2 \rfloor + 1$.

Lemma 9. Let $m \ge 5$ be an odd integer and (X, Y) a partition of V(G) of a graph G such that $|Y| \ge (m+1)/2$ and $|X - (N(y_i) \cup N(y_i))| \ge (m-1)/2$ for any $y_i, y_i \in Y$. If \overline{G} contains no C_m , then G[Y] is a complete graph.

Proof. Set $Y = \{y_1, y_2, \dots, y_k\}$ and l = (m+1)/2, then $k \ge l$. If G[Y] is not a complete graph, say, $y_1y_2 \notin E(G)$, then since $|X - (N(y_i) \cup N(y_j))| \ge (m-1)/2$ for any $y_i, y_j \in Y$, we can choose $x_1, x_2, \dots, x_{l-1} \in X$ such that $y_i, y_{i+1} \notin N(x_{i-1})$ for $i = 2, \dots, l-1$ and $y_1, y_l \notin N(x_{l-1})$, which implies that $y_1y_2x_1y_3x_2y_4 \cdots x_{l-2}y_lx_{l-1}y_1$ is C_m in \overline{G} , a contradiction.

Download English Version:

https://daneshyari.com/en/article/6423375

Download Persian Version:

https://daneshyari.com/article/6423375

<u>Daneshyari.com</u>