

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

CrossMark

Chiral extensions of chiral polytopes

Gabe Cunningham^a, Daniel Pellicer^b

- ^a University of Massachusetts Boston, Boston, MA 02125, USA
- ^b Centro de Ciencias Matemáticas, UNAM, Morelia, Michoacan, Mexico

Article history:
Received 27 July 2013
Received in revised form 5 April 2014
Accepted 14 April 2014
Available online 5 May 2014

Keywords: Chiral polytope Abstract polytope Chiral extensions Extensions of polytopes

ABSTRACT

Given a chiral d-polytope $\mathcal K$ with regular facets, we describe a construction for a chiral (d+1)-polytope $\mathcal P$ with facets isomorphic to $\mathcal K$. Furthermore, $\mathcal P$ is finite whenever $\mathcal K$ is finite. We provide explicit examples of chiral 4-polytopes constructed in this way from chiral toroidal maps.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Abstract polytopes are combinatorial structures that mimic convex polytopes in several key ways. They also generalize (non-degenerate) maps on surfaces and face-to-face tessellations of euclidean, hyperbolic, and projective spaces. Regular polytopes have full symmetry by (abstract) reflections and have been extensively studied [7]. One of the most important problems in the study of regular polytopes is the *extension problem*: given a regular polytope $\mathcal K$ of rank d, what sorts of regular polytopes of rank d+1 have facets isomorphic to $\mathcal K$? Though this problem is far from solved, many useful partial results already exist (see, for example, [4,14]). In particular, if $\mathcal K$ is a finite regular polytope, then [10] shows how to construct infinitely many finite regular polytopes with facets isomorphic to $\mathcal K$.

Another important class of polytopes are the *chiral polytopes*, which have full rotational symmetry, but no symmetry by reflection. There are many examples in ranks 3 and 4 (see [1,16] for some of these). In higher ranks, however, we have only a handful of concrete examples.

Many of the important unsolved problems of chiral polytopes are summarized in [12]. Problems 24–30 all concern the extension problem for chiral polytopes, signifying both the importance of that general problem and how little is known. An important partial result was given in [11], where it is shown how to build a finite chiral polytope of rank d+1 with facets isomorphic to a finite regular polytope $\mathcal K$ of rank d. There are very restrictive conditions on the polytope $\mathcal K$, however, so more work remains to be done even on this piece of the extension problem (Problem 27 of [12]).

In this paper we use GPR graphs (as defined in [13]) to build chiral polytopes of rank d+1 with facets isomorphic to a given chiral polytope of rank d. In particular, Theorem 10 implies the following:

Theorem 1. Every finite chiral d-polytope with regular facets is itself the facet of a finite chiral (d + 1)-polytope.

This gives a partial answer to Problem 26 in [12]. We note that the assumption that the chiral d-polytope has regular facets is necessary (see [15, Proposition 9]).

We will start by giving background on polytopes in Section 2 and on GPR graphs in Section 3. Section 4 details the main construction, culminating in Theorem 10. Finally, in Section 5, we will apply the construction to a family of chiral toroidal maps $\{4, 4\}_{(b,c)}$ and analyze the structure of the resulting chiral polytope of rank 4.

2. Regular and chiral polytopes

In this section we introduce abstract regular and chiral polytopes, referring to [7,15] for details.

An (abstract) d-polytope $\mathcal K$ is a partially ordered set whose elements are called faces and which satisfies the following properties. It contains a minimum face F_{-1} and a maximum face F_d , and every flag of $\mathcal K$ (maximal totally ordered subset) contains precisely d+2 elements, including F_{-1} and F_d . This induces a rank function from $\mathcal K$ to the set $\{-1,0,\ldots,d\}$ such that $rank(F_{-1})=-1$ and $rank(F_d)=d$. The faces of rank i are called i-faces, the 0-faces are called v-ertices, the 1-faces are called v-faces are called v-faces are called v-faces are called v-faces are called v-faces. Furthermore, we say that v-faces are called v

If F is an (i-2)-face and G is an (i+1)-face of the d-polytope $\mathcal K$, with F < G, then the section $G/F := \{H \mid F \leq H \leq G\}$ is an abstract polygon. If $\mathcal K$ has the property that the type of each of these sections depends only on i (and not on the particular choice of F and G), then we say that $\mathcal K$ is equivelar. In this case, $\mathcal K$ has a Schläfli type (or Schläfli symbol) $\{p_1,\ldots,p_{d-1}\}$, where the section G/F is a p_i -gon whenever F is an (i-2)-face and G is an (i+1)-face with F < G. The numbers p_i satisfy $2 \leq p_i \leq \infty$, but in this paper we will always have $3 \leq p_i$. Regular and chiral polytopes, defined below, are examples of equivelar polytopes.

An *automorphism* of a *d*-polytope $\mathcal K$ is an order-preserving permutation of its faces. The group of automorphisms of $\mathcal K$ is denoted by $\Gamma(\mathcal K)$. There is a natural action of $\Gamma(\mathcal K)$ on the flags of $\mathcal K$, and we say that $\mathcal K$ is *regular* if this action is transitive. In this case, $\Gamma(\mathcal K)$ is generated by involutions ρ_0,\ldots,ρ_{d-1} , where ρ_i is the unique automorphism mapping a fixed *base flag* Φ to its *i*-adjacent flag Φ^i . These generators satisfy the relations

$$\rho_i^2 = \varepsilon,$$
 $(\rho_i \rho_i)^2 = \varepsilon \quad \text{whenever } |i - j| \ge 2,$

where ε denotes the identity element. Regular polytopes are equivelar, and the order of the element $\rho_{i-1}\rho_i$ coincides with the Schläfli number p_i .

The generators $\{\rho_0, \ldots, \rho_{d-1}\}$ also satisfy the intersection conditions given by

$$\langle \rho_i \mid i \in I \rangle \cap \langle \rho_i \mid i \in J \rangle = \langle \rho_i \mid i \in I \cap J \rangle, \tag{1}$$

for all $I, J \subseteq \{0, ..., d - 1\}$.

A *string C-group* is a group together with a generating set $\{\rho_0, \ldots, \rho_{d-1}\}$ such that the generators ρ_i are involutions satisfying the relation $(\rho_i \rho_j)^2 = \varepsilon$ for $|i-j| \ge 2$, and the intersection condition (1). The string C-groups are in a one-to-one correspondence with the automorphism groups of regular polytopes; in particular, every regular polytope can be reconstructed from its automorphism group.

The *rotation subgroup* of (the automorphism group of) a regular d-polytope \mathcal{K} is defined as the subgroup $\Gamma^+(\mathcal{K})$ of $\Gamma(\mathcal{K})$ consisting of all elements that can be expressed as words of even length on the generators $\rho_0, \ldots, \rho_{d-1}$. The index of $\Gamma^+(\mathcal{K})$ in $\Gamma(\mathcal{K})$ is at most 2. Whenever $\Gamma^+(\mathcal{K})$ has index 2 in $\Gamma(\mathcal{K})$ we say that \mathcal{K} is *orientably regular*; other sources also use the term *directly regular* (see, for example, [15]).

For $i=1,\ldots,d-1$ we define the abstract rotation σ_i to be $\rho_{i-1}\rho_i$, that is, the automorphism of $\mathcal K$ mapping the base flag Φ to $(\Phi^i)^{i-1}$. Then $\Gamma^+(\mathcal K)=\langle\sigma_1,\ldots,\sigma_{d-1}\rangle$ and the abstract rotations satisfy the relations

$$(\sigma_i \cdots \sigma_i)^2 = \varepsilon \tag{2}$$

for i < j. The order of σ_i is just the entry p_i in the Schläfli symbol.

We define abstract half-turns as the involutions $\tau_{i,j} := \sigma_i \cdots \sigma_j$ for i < j. For consistency we also define $\tau_{0,i} := \tau_{i,d} := \varepsilon$ and denote σ_i by $\tau_{i,j}$. Then the abstract rotations and half-turns satisfy the intersection condition given by

$$\langle \tau_{i,j} \mid i \leq j; i-1, j \in I \rangle \cap \langle \tau_{i,j} \mid i \leq j; i-1, j \in J \rangle = \langle \tau_{i,j} \mid i \leq j; i-1, j \in I \cap J \rangle$$

$$(3)$$

for $I, I \subseteq \{-1, ..., d\}$.

We say that the d-polytope \mathcal{K} is *chiral* if its automorphism group induces two orbits on flags with the property that adjacent flags always belong to different orbits. The facets and vertex-figures of a chiral polytope must be either orientably regular or chiral, and the (d-2)-faces must be orientably regular (see [15, Proposition 9]).

The automorphism group $\Gamma(\mathcal{K})$ of a chiral polytope is generated by elements $\sigma_1, \ldots, \sigma_{d-1}$, where σ_i maps a base flag Φ to $(\Phi^{i})^{i-1}$. That is, σ_i cyclically permutes the i- and (i-1)-faces of \mathcal{K} incident with the (i-2)- and (i+1)-faces of Φ . Furthermore, the generators σ_i also satisfy (2) as well as the intersection conditions (3). Because of the obvious similarities between the automorphism group of a chiral polytope and the rotation subgroup of a regular polytope we shall also refer to the generators σ_i of the automorphism group of a chiral polytope as abstract rotations, to the products

Download English Version:

https://daneshyari.com/en/article/6423384

Download Persian Version:

https://daneshyari.com/article/6423384

<u>Daneshyari.com</u>