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a b s t r a c t

Given a chiral d-polytope K with regular facets, we describe a construction for a chiral
(d + 1)-polytope P with facets isomorphic to K . Furthermore, P is finite whenever K
is finite. We provide explicit examples of chiral 4-polytopes constructed in this way from
chiral toroidal maps.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Abstract polytopes are combinatorial structures that mimic convex polytopes in several key ways. They also generalize
(non-degenerate) maps on surfaces and face-to-face tessellations of euclidean, hyperbolic, and projective spaces. Regular
polytopes have full symmetry by (abstract) reflections and have been extensively studied [7]. One of the most important
problems in the study of regular polytopes is the extension problem: given a regular polytope K of rank d, what sorts of
regular polytopes of rank d + 1 have facets isomorphic to K? Though this problem is far from solved, many useful partial
results already exist (see, for example, [4,14]). In particular, ifK is a finite regular polytope, then [10] shows how to construct
infinitely many finite regular polytopes with facets isomorphic to K .

Another important class of polytopes are the chiral polytopes, which have full rotational symmetry, but no symmetry by
reflection. There are many examples in ranks 3 and 4 (see [1,16] for some of these). In higher ranks, however, we have only
a handful of concrete examples.

Many of the important unsolved problems of chiral polytopes are summarized in [12]. Problems 24–30 all concern the
extension problem for chiral polytopes, signifying both the importance of that general problem and how little is known. An
important partial result was given in [11], where it is shown how to build a finite chiral polytope of rank d + 1 with facets
isomorphic to a finite regular polytope K of rank d. There are very restrictive conditions on the polytope K , however, so
more work remains to be done even on this piece of the extension problem (Problem 27 of [12]).

In this paper we use GPR graphs (as defined in [13]) to build chiral polytopes of rank d + 1 with facets isomorphic to a
given chiral polytope of rank d. In particular, Theorem 10 implies the following:

Theorem 1. Every finite chiral d-polytope with regular facets is itself the facet of a finite chiral (d + 1)-polytope.

This gives a partial answer to Problem 26 in [12]. We note that the assumption that the chiral d-polytope has regular facets
is necessary (see [15, Proposition 9]).

We will start by giving background on polytopes in Section 2 and on GPR graphs in Section 3. Section 4 details the main
construction, culminating in Theorem 10. Finally, in Section 5, we will apply the construction to a family of chiral toroidal
maps {4, 4}(b,c) and analyze the structure of the resulting chiral polytope of rank 4.
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2. Regular and chiral polytopes

In this section we introduce abstract regular and chiral polytopes, referring to [7,15] for details.
An (abstract) d-polytope K is a partially ordered set whose elements are called faces and which satisfies the following

properties. It contains a minimum face F−1 and a maximum face Fd, and every flag of K (maximal totally ordered subset)
contains precisely d + 2 elements, including F−1 and Fd. This induces a rank function from K to the set {−1, 0, . . . , d} such
that rank(F−1) = −1 and rank(Fd) = d. The faces of rank i are called i-faces, the 0-faces are called vertices, the 1-faces are
called edges and the (d−1)-faces are called facets. Furthermore, we say thatK has rank d. In analogywith convex polytopes,
an abstract 3-polytope is also called a polyhedron. We shall abuse notation and identify the section G/F−1 := {H | H ≤ G}

with the face G itself. Given a vertex v, the section Fd/v := {H | H ≥ v} is called the vertex-figure of K at v. For every pair of
incident faces F ≤ G such that rank(G) − rank(F) = 2, there exist precisely two faces H1 and H2 such that F < H1,H2 < G.
This property is referred to as the diamond condition. As a consequence of the diamond condition, for any flag Φ and any
i ∈ {0, . . . , d − 1} there exists a unique flag Φ i that differs from Φ only in the i-face. This flag is called the i-adjacent
flag of Φ . Finally, K must be strongly flag-connected, meaning that for any two flags Φ, Φ ′ there exists a sequence of flags
Φ = Ψ0, Ψ1, . . . , Ψm = Φ ′ such that Φ ∩ Φ ′

⊆ Ψk, and Ψk−1 is adjacent to Ψk for k = 1, . . . ,m.
If F is an (i−2)-face andG is an (i+1)-face of the d-polytopeK , with F < G, then the sectionG/F := {H | F ≤ H ≤ G} is an

abstract polygon. If K has the property that the type of each of these sections depends only on i (and not on the particular
choice of F and G), then we say that K is equivelar. In this case, K has a Schläfli type (or Schläfli symbol) {p1, . . . , pd−1},
where the section G/F is a pi-gon whenever F is an (i − 2)-face and G is an (i + 1)-face with F < G. The numbers pi satisfy
2 ≤ pi ≤ ∞, but in this paper we will always have 3 ≤ pi. Regular and chiral polytopes, defined below, are examples of
equivelar polytopes.

An automorphism of a d-polytope K is an order-preserving permutation of its faces. The group of automorphisms of K is
denoted byΓ (K). There is a natural action ofΓ (K) on the flags ofK , andwe say thatK is regular if this action is transitive.
In this case, Γ (K) is generated by involutions ρ0, . . . , ρd−1, where ρi is the unique automorphismmapping a fixed base flag
Φ to its i-adjacent flag Φ i. These generators satisfy the relations

ρ2
i = ε,

(ρiρj)
2

= ε whenever |i − j| ≥ 2,

where ε denotes the identity element. Regular polytopes are equivelar, and the order of the element ρi−1ρi coincides with
the Schläfli number pi.

The generators {ρ0, . . . , ρd−1} also satisfy the intersection conditions given by

⟨ρi | i ∈ I⟩ ∩ ⟨ρi | i ∈ J⟩ = ⟨ρi | i ∈ I ∩ J⟩, (1)

for all I, J ⊆ {0, . . . , d − 1}.
A string C-group is a group together with a generating set {ρ0, . . . , ρd−1} such that the generators ρi are involutions

satisfying the relation (ρiρj)
2

= ε for |i − j| ≥ 2, and the intersection condition (1). The string C-groups are in a one-
to-one correspondence with the automorphism groups of regular polytopes; in particular, every regular polytope can be
reconstructed from its automorphism group.

The rotation subgroup of (the automorphism group of) a regular d-polytope K is defined as the subgroup Γ +(K) of
Γ (K) consisting of all elements that can be expressed as words of even length on the generators ρ0, . . . , ρd−1. The index
of Γ +(K) in Γ (K) is at most 2. Whenever Γ +(K) has index 2 in Γ (K) we say that K is orientably regular; other sources
also use the term directly regular (see, for example, [15]).

For i = 1, . . . , d−1 we define the abstract rotation σi to be ρi−1ρi, that is, the automorphism of K mapping the base flag
Φ to (Φ i)i−1. Then Γ +(K) = ⟨σ1, . . . , σd−1⟩ and the abstract rotations satisfy the relations

(σi · · · σj)
2

= ε (2)

for i < j. The order of σi is just the entry pi in the Schläfli symbol.
We define abstract half-turns as the involutions τi,j := σi · · · σj for i < j. For consistency we also define τ0,i := τi,d := ε

and denote σi by τi,i. Then the abstract rotations and half-turns satisfy the intersection condition given by

⟨τi,j | i ≤ j; i − 1, j ∈ I⟩ ∩ ⟨τi,j | i ≤ j; i − 1, j ∈ J⟩ = ⟨τi,j | i ≤ j; i − 1, j ∈ I ∩ J⟩ (3)

for I, J ⊆ {−1, . . . , d}.
We say that the d-polytope K is chiral if its automorphism group induces two orbits on flags with the property that

adjacent flags always belong to different orbits. The facets and vertex-figures of a chiral polytope must be either orientably
regular or chiral, and the (d − 2)-faces must be orientably regular (see [15, Proposition 9]).

The automorphism group Γ (K) of a chiral polytope is generated by elements σ1, . . . , σd−1, where σi maps a base flag
Φ to (Φ i)i−1. That is, σi cyclically permutes the i- and (i − 1)-faces of K incident with the (i − 2)- and (i + 1)-faces
of Φ . Furthermore, the generators σi also satisfy (2) as well as the intersection conditions (3). Because of the obvious
similarities between the automorphism group of a chiral polytope and the rotation subgroup of a regular polytope we
shall also refer to the generators σi of the automorphism group of a chiral polytope as abstract rotations, to the products
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