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a b s t r a c t

In this paper we present sufficient conditions under which a nilpotent table algebra is
exactly isomorphic to the wreath product of thin table algebras, and show by examples
that this result is not true when the conditions are replaced by weaker ones. Applications
to association schemes are also discussed.
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1. Introduction

The wreath product of table algebras provides an important way to construct the new table algebras from the old ones
(cf. [2]). A special class of varietal Terwilliger algebras is characterized by their base C-algebras as wreath products of
2-dimensional and thin table algebras (cf. [10, Theorem 1.10]). Nilpotent table algebras are an important class of table
algebras. In this paper we present sufficient conditions under which a nilpotent table algebra is exactly isomorphic to the
wreath product of thin table algebras (see Theorem 1.1). As a corollary of [3, Theorem 3.2], Bagherian [3] proved the similar
result for nilpotent association schemes (cf. [3, Corollary 3.6]). However, Example 3.5 shows that [3, Theorem 3.2] is not
true. Our method in this paper is totally different from that in [3]. We will also present examples showing that Theorem 1.1
is not true when the conditions are replaced by weaker ones. As an immediate consequence of Theorem 1.1, we obtain the
similar result for nilpotent association schemes (see Corollary 1.3), which is slightly stronger than [3, Corollary 3.6].

In the following we state the main results of the paper. Let us first state some necessary definitions and notation.
A table algebra (A, B) is a finite dimensional associative algebra A over the complex numbers C, and a distinguished basis

B = {b0 = 1A, b1, b2, . . . , bk} for A such that the following properties hold:

(i) The structure constants for B are nonnegative real numbers; that is, for all bi, bj ∈ B, bibj =
k

m=0 λijm bm, for some
λijm ∈ R≥0.

(ii) There is an algebra antiautomorphism (denoted by ∗) of A such that (a∗)∗ = a for all a ∈ A and b ∗

i ∈ B for all bi ∈ B.
(Hence i∗ is defined by bi∗ = b ∗

i .)
(iii) For all bi, bj ∈ B, λij0 = 0 if j ≠ i∗; and λii∗0 > 0.

Let (A, B) be a table algebra. It iswell known that (A, B) has a (unique) degreemap ν : A → C such that ν(bi) = ν(b ∗

i ) > 0
for all bi ∈ B (see [1]). The order of any bi ∈ B is o(bi) := ν(bi)2/λii∗0, and the order of any nonempty subsetN of B is o(N) :=

bi∈N o(bi). If for any bi ∈ B, ν(bi) = λii∗0, then (A, B) is called a standard table algebra. If all structure constants and degrees
ν(bi) are nonnegative integers, then (A, B) is called an integral table algebra. Let B = {b0 = 1A, b1, b2, . . . , bk}. For any a ∈ A
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with a =
k

i=0 αibi, define Supp(a) := {bi | αi ≠ 0}. For any nonempty subsetsR and L ofB, defineRL :=


b∈R,c∈L Supp(bc),
and R∗

= {b∗
| b ∈ R}. A nonempty subsetN of B is called a closed subset ifN∗N ⊆ N. IfN is a closed subset of B, then 1A ∈ N,

N∗
= N, and (CN,N) is also a table algebra, called a table subalgebra of (A, B), where CN is the C-space with basis N.
Let (A, B) be a standard table algebra, and N a closed subset of B. For any bi ∈ B, we write N{bi}N as NbiN. Then {NbiN |

bi ∈ B} forms a partition of B. For any nonempty subset R of B, let R+
=


bi∈R bi. Let

B//N := {bi//N | bi ∈ B}, where bi//N := o(N)−1(NbiN)+. (1.1)
Let A//N := C(B//N), the C-space with basis B//N. Then (A//N, B//N) is a standard table algebra, called the quotient table
algebra of (A, B) with respect to N. Note that for any bi ∈ B, (bi//N)∗ = b ∗

i //N, and the order o(bi//N) = o(N)−1o(NbiN).
(See [1, Theorem 4.9].) If A is commutative, we write bi//N as bi/N, B//N as B/N, and A//N as A/N.

Let (A, B) be a table algebra. An element bi ∈ B is called a thin (or linear) element if bib∗

i = λii∗01A. The set of all thin
elements of B is denoted by L(B). It is known that L(B) is a closed subset of B. If L(B) = B, then (A, B) is called a thin table
algebra. If (A, B) is standard, then define L(i)(B) for all i ≥ 0 as follows: L(0)(B) := {1A}, L(1)(B) := L(B), and recursively,
L(i+1)(B) is the closed subset of B such that L(i+1)(B)//L(i)(B) = L(B//L(i)(B)). If (A, B) is standard and commutative, and
L(n)(B) = B for some n > 0, then (A, B) is called a nilpotent table algebra, and the minimal n > 0 such that L(n)(B) = B is
called the nilpotent class of B. For properties of nilpotent table algebras, the reader is referred to [5,11].

Let (A, B) and (C,D) be standard table algebras, with B = {b0 = 1A, b1, . . . , bk} and D = {d0 = 1C , d1, . . . , dl}. Then
the tensor product (A ⊗ C, B ⊗ D) is also a standard table algebra, where B ⊗ D := {bi ⊗ dj | 0 ≤ i ≤ k, 0 ≤ j ≤ l}. Let
B ≀ D := {b0 ⊗ dj | 0 ≤ j ≤ l} ∪ {bi ⊗ D+

| 1 ≤ i ≤ k}, and A ≀ C the C-space with basis B ≀ D. Then (A ≀ C, B ≀ D) is also a
standard table algebra, called the wreath product of (A, B) and (C,D).

Two table algebras (A, B) and (C,D) are said to be exactly isomorphic and denoted by (A, B)∼=x(C,D) or simply B∼=x D, if
there is an algebra isomorphism φ : A → C such that φ(B) = D, where φ(B) := {φ(bi) | bi ∈ B}.

The next theorem is the main result of the paper.

Theorem 1.1. Let (A, B) be a nilpotent table algebra of class n (≥2) such thatL(i+1)(B)/L(i)(B)
 are distinct prime numbers, where 0 ≤ i ≤ n − 2. (1.2)

Then

B∼=x

B/L(n−1)(B)


≀

L(n−1)(B)/L(n−2)(B)


≀ · · · ≀


L(2)(B)/L(1)(B)


≀ L(1)(B) (1.3)

if and only if

A/L(i)(B), B/L(i)(B)


are all integral table algebras, 0 ≤ i ≤ n − 2.

Remark 1.2. (i) In the above theorem, we do not need any assumption about
B/L(n−1)(B)

.
(ii) Let (A, B) be a nilpotent table algebra of class n (≥2) such that (1.3) holds, then


A/L(i)(B), B/L(i)(B)


are all integral

table algebras, 0 ≤ i ≤ n − 2, whether (1.2) is satisfied or not.

Let X = (X, {Ri}0≤i≤d) be an association scheme. Let Ai be the adjacency matrix of Ri, 0 ≤ i ≤ d, and let (A, B) be the
Bose–Mesner algebra of X, where B := {A0, A1, . . . , Ad}. Then (A, B) is a standard table algebra. If (A, B) is a nilpotent table
algebra of class n, then X is called a nilpotent association scheme of class n. As an immediate consequence of Theorem 1.1, we
have the following corollary. Since there are different definitions of wreath products of association schemes in the literature,
the definition of the wreath product of association schemes in the next corollary will be stated in the next section. For the
definition of the isomorphism of association schemes, the reader is referred to [15].

Corollary 1.3. Let X be a nilpotent association scheme of class n such that its Bose–Mesner algebra (A, B) satisfies (1.2). Then
X is isomorphic to the wreath product of thin association schemes.

Since there is no assumption about |B/L(n−1)(B)|, the above corollary is slightly stronger than [3, Corollary 3.6].
The wreath products of association schemes have been studied in several papers; for example, see [8,9]. In particular,

assume that X is a nilpotent association scheme. Then by [9, Theorem B], X is isomorphic to the wreath product of thin
association schemes if and only if for any adjacency matrices Ai, Aj such that Ai ≠ A∗

j , where A∗

j is the transpose of Aj,
|supp(AiAj)| = 1.

Theorem 1.1 and Corollary 1.3 are proved in Section 2. In Section 3 we present a counterexample to [3, Theorem 3.2] as
well as examples showing that (1.3) is not true if (1.2) is replaced by weaker conditions.

2. Proofs of Theorem 1.1 and Corollary 1.3

Let us first prove Theorem 1.1. We need the next two lemmas.

Lemma 2.1 (cf. [12, Lemmas 3.1 and 3.3]). Let (A, B) be a standard table algebra, and N a closed subset of B. Then the following
hold.
(i) B∼=x(B//N) ≀ N if and only if for any bi ∈ N and bj ∈ B \ N, bibj = bjbi = o(bi)bj.
(ii) If (A, B)∼=x(A//N, B//N) ≀ (U,V) for some standard table algebra (U,V), then (CN,N)∼=x(U,V) and B∼=x(B//N) ≀ N.
(iii) If (A, B)∼=x(C,D) ≀ (CN,N) for some standard table algebra (C,D), then (C,D)∼=x(A//N, B//N) and B∼=x(B//N) ≀ N.
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