Long properly colored cycles in edge colored complete graphs

Guanghui Wang ${ }^{\text {a }}$, Tao Wang ${ }^{\text {b,c,* }}$, Guizhen Liu ${ }^{\text {a }}$
a School of Mathematics, Shandong University, Jinan, 250100, Shandong, PR China
${ }^{\mathrm{b}}$ Institute of Applied Mathematics, Henan University, Kaifeng, 475004, PR China
${ }^{\text {c College of Mathematics and Information Science, Henan University, Kaifeng, 475004, PR China }}$

ARTICLE INFO

Article history:

Received 14 May 2013
Received in revised form 3 February 2014
Accepted 4 February 2014
Available online 21 February 2014

Keywords:

Properly edge colored complete graph Properly colored Hamilton path Properly colored Hamilton cycle

Abstract

Let K_{n}^{c} denote a complete graph on n vertices whose edges are colored in an arbitrary way. Let $\Delta^{\text {mon }}\left(K_{n}^{c}\right)$ denote the maximum number of edges of the same color incident with a vertex of K_{n}^{c}. A properly colored cycle (path) in K_{n}^{c} is a cycle (path) in which adjacent edges have distinct colors. B. Bollobás and P. Erdös (1976) proposed the following conjecture: if $\Delta^{\text {mon }}\left(K_{n}^{c}\right)<\left\lfloor\frac{n}{2}\right\rfloor$, then K_{n}^{c} contains a properly colored Hamiltonian cycle. Li, Wang and Zhou proved that if $\Delta^{\text {mon }}\left(K_{n}^{c}\right)<\left\lfloor\frac{n}{2}\right\rfloor$, then K_{n}^{c} contains a properly colored cycle of length at least $\left\lceil\frac{n+2}{3}\right\rceil+1$. In this paper, we improve the bound to $\left\lceil\frac{n}{2}\right\rceil+2$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered here are finite, undirected, and simple. Let G be a graph with vertex set V and edge set E.
An edge coloring of a graph is an assignment of "colors" to the edges of the graph. An edge colored graph is a graph with an edge coloring. A cycle (path) in an edge colored graph is properly colored if no two adjacent edges in it have the same color.

Grossman and Häggkvist [9] gave a sufficient condition on the existence of a properly colored cycle in edge colored graphs with two colors, and Yeo [17] extended the result to edge colored graphs with any number of colors. Given an edge colored graph G, let $\operatorname{deg}^{c}(v)$, named the color degree of a vertex v, be defined as the maximum number of edges incident to v that have distinct colors. The minimum color degree $\delta^{c}(G)$ is the minimum $\operatorname{deg}^{c}(v)$ over all vertices of G. In [12], some minimum color degree conditions for the existence of properly colored cycles are obtained. In particular, they proved that if G is an edge colored graph of order n satisfying $\delta^{c}(G) \geq d \geq 2$, then either G has a properly colored path of length at least $2 d$, or G has a properly colored cycle of length at least $\left\lceil\frac{2 d}{3}\right\rceil+1$. In [13], Lo improved the bound $\left\lceil\frac{2 d}{3}\right\rceil+1$ to the best possible value $d+1$.

Let K_{n}^{c} be an edge colored complete graph on n vertices, and let $c(u, v)$ be the color assigned to edge $u v$. In [4], Barr gave a simple sufficient condition for the existence of a properly colored Hamiltonian path in K_{n}^{c} : K_{n}^{c} has no monochromatic triangles. Bang-Jensen, Gutin and Yeo [3] proved that if K_{n}^{c} contains a properly colored 2-factor, then it has a properly colored Hamiltonian path. In [7], Feng et al. proved that K_{n}^{c} has a properly colored Hamilton path iff K_{n}^{c} has a properly colored almost 2-factor (an almost 2-factor is a spanning subgraph consisting of disjoint cycles and a path).

Bollobás and Erdös [5] proved that if $n \geq 3$ and $\delta^{c}\left(K_{n}^{c}\right) \geq \frac{7 n}{8}$, then there exists a properly colored Hamiltonian cycle. They also proposed a question: whether the bound $\frac{7 n}{8}$ can be improved to $\frac{n+5}{3}$. Fujita and Magnant [8] constructed an edge colored complete graph $K_{2 m}$ with $\delta^{c}\left(K_{2 m}\right)=m$, which has no properly colored Hamiltonian cycles. So $\delta^{c}\left(K_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ is not

[^0]enough. Let $\Delta^{\text {mon }}\left(K_{n}^{c}\right)$ be the maximum number of edges of the same color incident with a vertex of K_{n}^{c}. In the same paper, Bollobás and Erdös proposed the following conjecture.

Conjecture 1 (Bollobás and Erdös [5]). If $\Delta^{\text {mon }}\left(K_{n}^{c}\right)<\left\lfloor\frac{n}{2}\right\rfloor$, then K_{n}^{c} has a properly colored Hamiltonian cycle.
Bollobás and Erdös proved that if $\Delta^{\text {mon }}\left(K_{n}^{c}\right) \leq \frac{n}{69}$ then K_{n}^{c} contains a properly colored Hamiltonian cycle. This result was improved by Chen and Daykin [6] and Shearer [15].

As far as we know, the best asymptotic estimate was obtained by Alon and Gutin using the probabilistic method.
Theorem 1.1 (Alon and Gutin [1]). For every positive real number ϵ, there exists $n_{0}=n_{0}(\epsilon)$ so that for every $n>n_{0}$, if K_{n}^{c} satisfies

$$
\begin{equation*}
\Delta^{\mathrm{mon}}\left(K_{n}^{c}\right) \leq\left(1-\frac{1}{\sqrt{2}}-\epsilon\right) n \tag{1}
\end{equation*}
$$

then K_{n}^{c} contains a properly colored Hamiltonian cycle.
Li, Wang and Zhou [12] studied long properly colored cycles in edge colored complete graphs and proved that if $\Delta^{\text {mon }}\left(K_{n}^{c}\right)<\left\lfloor\frac{n}{2}\right\rfloor$, then K_{n}^{c} contains a properly colored cycle of length at least $\left\lceil\frac{n+2}{3}\right\rceil+1$. For more details concerning properly colored cycles and paths, we refer the reader to [2,11,10,16]. In this paper, we improve the bound on the length of the properly colored cycles and prove the following theorem.

Theorem 1.2. If $\Delta^{\text {mon }}\left(K_{n}^{c}\right)<\left\lfloor\frac{n}{2}\right\rfloor$, then K_{n}^{c} contains a properly colored cycle of length at least $\left\lceil\frac{n}{2}\right\rceil+2$.
The main idea is the rotation-extension technique of Pósa [14], which was used on general edge colored graphs in [13]. When a and b are integers, the notation $[a, b]$ is used to indicate the interval of all integers between a and b, including both. In particular, $[a, a-1]$ is an empty set. A properly colored path P of length ℓ is viewed as an ℓ-tuple $\left(v_{0}, v_{1}, \ldots, v_{\ell}\right)$, which is different from $\left(v_{\ell}, v_{\ell-1}, \ldots, v_{0}\right)$. For such a properly colored path $P=\left(v_{1}, v_{2}, \ldots, v_{\ell}\right)$, denote $\left\{v \mid c\left(v_{1}, v_{2}\right) \neq c\left(v_{1}, v\right)\right\}$ by $N^{c}\left(v_{1}, P\right)$ and $\left\{v \mid c\left(v_{\ell}, v_{\ell-1}\right) \neq c\left(v, v_{\ell}\right)\right\}$ by $N^{c}\left(v_{\ell}, P\right)$.

2. The proof of Theorem 1.2

If $3 \leq n \leq 5$, then K_{n}^{c} is a properly colored complete graph, and hence each Hamiltonian cycle is properly colored. Our conclusion holds clearly. So we may assume that $n \geq 6$.

We will prove Theorem 1.2 by contradiction. Suppose that each properly colored cycle is of length at most $\left\lceil\frac{n}{2}\right\rceil+1$. For simplicity, let the vertices of K_{n}^{c} be labeled with integers from 1 to n. Let P_{0} be a longest properly colored path. Without loss of generality, assume that $P_{0}=(1,2, \ldots, \ell)$.

Put

$$
X=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}=\left\{x_{i} \mid c\left(1, x_{i}\right) \neq c(1,2)\right\}=N^{c}\left(1, P_{0}\right)
$$

and

$$
Y=\left\{y_{1}, y_{2}, \ldots, y_{q}\right\}=\left\{y_{i} \mid c\left(y_{i}, \ell\right) \neq c(\ell-1, \ell)\right\}=N^{c}\left(\ell, P_{0}\right) .
$$

Moreover, $x_{1}, x_{2}, \ldots, x_{p}$ and $y_{1}, y_{2}, \ldots, y_{q}$ are increasing sequences. Since $\Delta^{\text {mon }}\left(K_{n}^{c}\right)<\left\lfloor\frac{n}{2}\right\rfloor$, we have min $\{|X|,|Y|\} \geq$ $\left\lceil\frac{n}{2}\right\rceil$; consequently, $x_{1}<x_{p}$. Note that $X, Y \subset V\left(P_{0}\right)$ since P_{0} is a longest properly colored path. Thus $\ell \geq\left\lceil\frac{n}{2}\right\rceil+2$. Note that either $\ell \notin X$ or $1 \notin Y$; otherwise $(1,2, \ldots, \ell, 1)$ is a properly colored cycle of length at least $\left\lceil\frac{n}{2}\right\rceil+2$, which is a contradiction. Hence $\ell \geq\left\lceil\frac{n}{2}\right\rceil+3$.

Let $y_{s} \in Y$ be the maximum such that $c\left(\ell, y_{i}\right)=c\left(y_{i}, y_{i}+1\right)$ for all $y_{i} \in\left[y_{1}, y_{s}\right] \cap Y$. Note that y_{s} is well defined, since $c\left(\ell, y_{1}\right)=c\left(y_{1}, y_{1}+1\right)$; otherwise, $\left(y_{1}, y_{1}+1, \ldots, \ell, y_{1}\right)$ is a properly colored cycle of length at least $\left\lceil\frac{n}{2}\right\rceil+2$. Clearly, $y_{s} \leq \ell-2$.

Note that $c\left(1, x_{p}\right)=c\left(x_{p}-1, x_{p}\right)$ or else $\left(1,2, \ldots, x_{p}, 1\right)$ is a properly colored cycle of length at least $\left\lceil\frac{n}{2}\right\rceil+2$, a contradiction.

Claim 1. $y_{s} \leq x_{p}-3$.
Proof of Claim 1. If $x_{p}=\ell$, then $y_{s} \leq \ell-3$; otherwise, $(1,2, \ldots, \ell-2, \ell, 1)$ is a properly colored cycle of length $\ell-1 \geq\left\lceil\frac{n}{2}\right\rceil+2$, a contradiction. So we may assume that $x_{p} \leq \ell-1$. Let $y_{i} \in Y$ be the maximum such that $y_{i}<x_{p}$. If $c\left(y_{i}, y_{i}+1\right)=c\left(y_{i}, \ell\right)$, then $\left(1, \ldots, y_{i}, \ell, \ell-1, \ldots, x_{p}, 1\right)$ is a properly colored cycle containing $Y \cup\{\ell, \ell-1\}$, a contradiction. Hence, $c\left(y_{i}, y_{i}+1\right) \neq c\left(y_{i}, \ell\right)$, by the definition of y_{s}, we have $y_{s} \leq x_{p}-2$. If $y_{s}=x_{p}-2$, then $\left(1, \ldots, x_{p}-2, \ell, \ell-1, \ldots, x_{p}, 1\right)$ is a properly colored cycle of length $\ell-1 \geq\left\lceil\frac{n}{2}\right\rceil+2$, which is a contradiction. Therefore, $y_{s} \leq x_{p}-3$.

Claim 2. There exist $u, w \in X$ such that $1 \leq y_{1} \leq y_{s}<u \leq\left\lceil\frac{n}{2}\right\rceil+1, u<w$ and the following proposition holds:
(a) $c\left(y_{i}, \ell\right)=c\left(y_{i}, y_{i}+1\right)$ for all $y_{i} \in\left[y_{1}, y_{s}\right] \cap Y$;

https://daneshyari.com/en/article/6423395

Download Persian Version:

https://daneshyari.com/article/6423395

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: wangtao@henu.edu.cn, iwangtao8@gmail.com (T. Wang).

