Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Binary matroids with no 4-spike minors

Sean McGuinness

Department of Mathematics, Thompson Rivers University, McGill Road, Kamloops, BC V2C5N3, Canada

ARTICLE INFO

Article history: Received 27 August 2013 Received in revised form 31 January 2014 Accepted 8 February 2014 Available online 28 February 2014

Keywords: Binary matroid *n*-spike Minor

1. Introduction

This paper concerns a problem in *extremal matroid theory*, an area of matroid theory which, much like extremal graph theory, is rich with numerous problems. For two surveys on this subject, see [2,8]. One general problem is, given a certain minor-closed class of matroids, find good bounds, as a function of rank, for the maximum size of a simple matroid in this class. Of particular interest are classes of binary matroids with certain forbidden minors. For $k \ge 2$, let \mathcal{P}_k be the class of binary matroids having no PG(k, 2)-minor. Finding sharp bounds for \mathcal{P}_k is an extremely hard problem, although we have the following good bound for the class \mathcal{P}_2 due to Heller [7] and Murty [12]:

Theorem 1.1 (*Heller*, *Murty*). If $M \in \mathscr{P}_2$ is simple, then $|E(M)| \leq \binom{r(M)+1}{2}$.

For binary minor-closed classes of matroids which contain \mathscr{P}_2 , the problem of bounding matroid size becomes quite tricky. In [9], Kung showed that $|E(M)| \leq \frac{15}{4} \binom{r(M)+1}{2}$ for all simple $M \in \mathscr{P}_3$. When considering larger classes containing \mathscr{P}_2 , it is useful to consider single element extensions of F_7 , for example, the affine geometry AG(3, 2). One may ask, what bounds are possible for the class of binary matroids containing no AG(3, 2)-minor? Another natural minor-closed class of matroids to consider is the class of binary matroids with no *n*-spike minor. An *n*-spike is a simple matroid *M* consisting of *n* triangles T_1, \ldots, T_n meeting at a point *e* where

(i) $r(T_1 \cup \cdots \cup T_k) = k + 1, \ k = 1, \dots, n - 1$

and

(ii) $r(T_1 \cup \cdots \cup T_n) = n$.

Note that a binary 3-spike is the Fano plane F_7 . *N*-spikes appear in numerous places in the literature on matroids: for example, see [3,5,14,15]. In particular, they are important in the theory of matroid representation. It was shown in [14] that *n*-spikes can have an unbounded number of inequivalent GF(q)-representations for $q \ge 7$. For $k \ge 3$, let \mathscr{N}_k be the set

http://dx.doi.org/10.1016/j.disc.2014.02.006 0012-365X/© 2014 Elsevier B.V. All rights reserved.

A B S T R A C T For a simple binary matroid *M* having no *n*-spike minor, we examine the problem of bounding |E(M)| as a function of its rank r(M) and circumference c(M). In particular, we show that $|E(M)| \le \min\left\{\frac{r(M)(r(M)+3)}{2}, c(M)r(M)\right\}$ for any simple, binary matroid *M* having no 4-spike minor. As a consequence, the same bound applies to simple, binary matroids having no AG(3, 2)-minor.

© 2014 Elsevier B.V. All rights reserved.

E-mail address: smcguinness@tru.ca.

of binary matroids having no k-spike minor. Then $\mathscr{P}_2 \subset \mathscr{N}_k$ for all $k \geq 3$. It is also easy to show that every non-trivial binary extension of the affine geometry AG(3, 2) is either isomorphic to a 4-spike or its dual (see Oxley [13]). For this reason, the class \mathscr{N}_4 is interesting and relevant here. In this paper, we focus on finding good bounds for the maximum size of simple matroids in \mathscr{N}_4 . It should be mentioned that "growth rates" of classes like \mathscr{N}_k and \mathscr{P}_k are bounded by quadratic functions of rank. More generally, let \mathscr{M} be a minor-closed class of matroids. The following theorem due to Geelen, Kung, and Whittle [6] demonstrates that the growth of the size of the matroids in \mathscr{M} , when it is finite, is either linear, quadratic, or exponential in terms of the rank.

Theorem 1.2 (Geelen, Kung, Whittle). Let *M* be a minor-closed class of matroids. Then one of the four possibilities below holds:

- (i) There exists $\alpha > 0$ such that $|E(M)| \leq \alpha r(M)$ for all simple $M \in \mathcal{M}$.
- (ii) \mathscr{M} contains all graphic matroids and there exists $\alpha > 0$ such that $|E(M)| \leq \alpha r(M)^2$ for all simple $M \in \mathscr{M}$.
- (iii) For some power of q, \mathcal{M} contains all GF(q)-representable matroids, and $|E(\overline{M})| \leq \alpha q^{r(M)}$ for some $\alpha > 0$ and for all $M \in \mathcal{M}$. (iv) \mathcal{M} contains all rank two matroids.

As a consequence of the above theorem, there exist constants $\alpha(k) > 0$ and $\beta(k) > 0$ such that $|E(M)| \le \alpha(k)r(M)^2$ for all simple $M \in \mathscr{N}_k$, and $|E(M)| \le \beta(k)r(M)^2$ for all simple $M \in \mathscr{P}_k$. Let c(M) denote the *circumference* of a matroid M, the size of a largest circuit. The main result of this paper, which we shall prove in the next two sections, is the following bound for \mathscr{N}_4 :

Theorem 1.3. Let M be a simple, binary matroid having no 4-spike minor. Then

$$|E(M)| \le \min\left\{\frac{r(M)(r(M)+3)}{2}, c(M)r(M)\right\}.$$

Since every 4-spike contains AG(3, 2) as a minor, \mathcal{N}_4 contains the class of matroids having no AG(3, 2)-minor, and consequently, we have the following corollary to the above theorem:

Corollary 1.4. Let M be a simple, binary matroid having no AG(3, 2)-minor. Then

$$|E(M)| \le \min\left\{\frac{r(M)(r(M)+3)}{2}, c(M)r(M)\right\}.$$

In a paper which has only recently come to the attention of the author, Kung et al. [10] showed that for any simple, binary matroid M having no AG(3, 2)-minor, $|E(M)| \le {\binom{r(M)+1}{2}}$, when $r(M) \ge 5$. In addition, they also show that for r(M) = r, the matroid $M(K_{r+1})$ is the unique matroid meeting the bound when $r \ge 6$. Their proof uses a computer check to verify the above bound for matroids of rank 5.

The bound in Theorem 1.1 can be improved using the following bound involving the circumference:

Theorem 1.5 (*McGuinness* [11]). Let M be a simple, binary matroid having no F_7 -minor. Then $|E(M)| \leq \frac{1}{2}c(M)r(M)$.

It is worth remarking that the above bound extends a well-known result of Erdős and Gallai (see [1,4]), which states that for a simple graph *G* on *n* vertices having circumference *c*, $|E(G)| \le \frac{1}{2}c(n-1)$. We believe that similar bounds are possible for the class \mathscr{P}_k in general: we venture the following conjecture:

Conjecture 1.6. For all $k \ge 2$ there is a constant $\alpha(k) > 0$ depending only on k such that $|E(M)| \le \alpha(k)c(M)r(M)$ for all simple matroids $M \in \mathcal{P}_k$.

For \mathscr{P}_3 , it seems possible to achieve the bound $|E(M)| \leq \frac{15}{4}r(M)c(M)$ by changing Kung's proof in [9], although I have not worked through all the details. In Section 5, we show that the above conjecture holds with \mathscr{N}_k in place of \mathscr{P}_k . In Section 4, we show that growth rate bounds for the class \mathscr{N}_k is related to the growth rate for the class of binary matroids having circumference at most k - 1.

2. Bounding the number of triangles

We shall refer to a circuit with two elements as a *digon*. A *Hamilton circuit* in a matroid is a spanning circuit. An element *e* is called a *chord* of a circuit *C* if $e \in cl(C) \setminus C$. In this section, we shall prove that if $M \in \mathscr{H}_4$ is simple and has a Hamilton circuit *C*, then there are at most |C| - 1 triangles which contain a fixed element $e \in C$. It turns out that this is the key ingredient for the proof of Theorem 1.3. To do this, we shall need the following useful observation:

Lemma 2.1. Let *M* be a simple binary matroid and let T_1, \ldots, T_n be triangles containing an element *e*. Let e_1, \ldots, e_n be distinct elements where $e_i \in T_i \setminus e$, $i = 1, \ldots, n$ and let $M_1 = si(M/e)$. Assuming $e_1, \ldots, e_n \in E(M_1)$, if there is a circuit in M_1 containing *k* of the elements e_1, \ldots, e_n , then *M* has a *k*-spike minor.

Download English Version:

https://daneshyari.com/en/article/6423400

Download Persian Version:

https://daneshyari.com/article/6423400

Daneshyari.com