Binary matroids with no 4 -spike minors

Sean McGuinness

Department of Mathematics, Thompson Rivers University, McGill Road, Kamloops, BC V2C5N3, Canada

ARTICLE INFO

Article history:

Received 27 August 2013
Received in revised form 31 January 2014
Accepted 8 February 2014
Available online 28 February 2014

Keywords:

Binary matroid
n-spike
Minor

Abstract

For a simple binary matroid M having no n-spike minor, we examine the problem of bounding $|E(M)|$ as a function of its rank $r(M)$ and circumference $c(M)$. In particular, we show that $|E(M)| \leq \min \left\{\frac{r(M)(r(M)+3)}{2}, c(M) r(M)\right\}$ for any simple, binary matroid M having no 4 -spike minor. As a consequence, the same bound applies to simple, binary matroids having no $A G(3,2)$-minor.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper concerns a problem in extremal matroid theory, an area of matroid theory which, much like extremal graph theory, is rich with numerous problems. For two surveys on this subject, see [2,8]. One general problem is, given a certain minor-closed class of matroids, find good bounds, as a function of rank, for the maximum size of a simple matroid in this class. Of particular interest are classes of binary matroids with certain forbidden minors. For $k \geq 2$, let \mathscr{P}_{k} be the class of binary matroids having no $\operatorname{PG}(k, 2)$-minor. Finding sharp bounds for \mathscr{P}_{k} is an extremely hard problem, although we have the following good bound for the class \mathscr{P}_{2} due to Heller [7] and Murty [12]:

Theorem 1.1 (Heller, Murty). If $M \in \mathscr{P}_{2}$ is simple, then $|E(M)| \leq\binom{ r(M)+1}{2}$.
For binary minor-closed classes of matroids which contain \mathscr{P}_{2}, the problem of bounding matroid size becomes quite tricky. In [9], Kung showed that $|E(M)| \leq \frac{15}{4}\binom{r(M)+1}{2}$ for all simple $M \in \mathscr{P}_{3}$. When considering larger classes containing \mathscr{P}_{2}, it is useful to consider single element extensions of F_{7}, for example, the affine geometry $A G(3,2)$. One may ask, what bounds are possible for the class of binary matroids containing no $A G(3,2)$-minor? Another natural minor-closed class of matroids to consider is the class of binary matroids with no n-spike minor. An n-spike is a simple matroid M consisting of n triangles T_{1}, \ldots, T_{n} meeting at a point e where
(i) $r\left(T_{1} \cup \cdots \cup T_{k}\right)=k+1, k=1, \ldots, n-1$
and
(ii) $r\left(T_{1} \cup \cdots \cup T_{n}\right)=n$.

Note that a binary 3-spike is the Fano plane F_{7}. N -spikes appear in numerous places in the literature on matroids: for example, see $[3,5,14,15]$. In particular, they are important in the theory of matroid representation. It was shown in [14] that n-spikes can have an unbounded number of inequivalent $G F(q)$-representations for $q \geq 7$. For $k \geq 3$, let \mathscr{N}_{k} be the set

[^0]of binary matroids having no k-spike minor. Then $\mathscr{P}_{2} \subset \mathscr{N}_{k}$ for all $k \geq 3$. It is also easy to show that every non-trivial binary extension of the affine geometry $\operatorname{AG}(3,2)$ is either isomorphic to a 4 -spike or its dual (see Oxley [13]). For this reason, the class \mathscr{N}_{4} is interesting and relevant here. In this paper, we focus on finding good bounds for the maximum size of simple matroids in \mathscr{N}_{4}. It should be mentioned that "growth rates" of classes like \mathscr{N}_{k} and \mathscr{P}_{k} are bounded by quadratic functions of rank. More generally, let \mathscr{M} be a minor-closed class of matroids. The following theorem due to Geelen, Kung, and Whittle [6] demonstrates that the growth of the size of the matroids in \mathscr{M}, when it is finite, is either linear, quadratic, or exponential in terms of the rank.

Theorem 1.2 (Geelen, Kung, Whittle). Let \mathscr{M} be a minor-closed class of matroids. Then one of the four possibilities below holds:
(i) There exists $\alpha>0$ such that $|E(M)| \leq \alpha r(M)$ for all simple $M \in \mathscr{M}$.
(ii) \mathscr{M} contains all graphic matroids and there exists $\alpha>0$ such that $|E(M)| \leq \alpha r(M)^{2}$ for all simple $M \in \mathscr{M}$.
(iii) For some power of q, \mathscr{M} contains all $G F(q)$-representable matroids, and $|E(\bar{M})| \leq \alpha q^{r(M)}$ for some $\alpha>0$ and for all $M \in \mathscr{M}$.
(iv) \mathscr{M} contains all rank two matroids.

As a consequence of the above theorem, there exist constants $\alpha(k)>0$ and $\beta(k)>0$ such that $|E(M)| \leq \alpha(k) r(M)^{2}$ for all simple $M \in \mathscr{N}_{k}$, and $|E(M)| \leq \beta(k) r(M)^{2}$ for all simple $M \in \mathscr{P}_{k}$. Let $c(M)$ denote the circumference of a matroid M, the size of a largest circuit. The main result of this paper, which we shall prove in the next two sections, is the following bound for \mathscr{N}_{4} :

Theorem 1.3. Let M be a simple, binary matroid having no 4-spike minor. Then

$$
|E(M)| \leq \min \left\{\frac{r(M)(r(M)+3)}{2}, c(M) r(M)\right\}
$$

Since every 4 -spike contains $A G(3,2)$ as a minor, \mathscr{N}_{4} contains the class of matroids having no $A G(3,2)$-minor, and consequently, we have the following corollary to the above theorem:

Corollary 1.4. Let M be a simple, binary matroid having no $A G(3,2)$-minor. Then

$$
|E(M)| \leq \min \left\{\frac{r(M)(r(M)+3)}{2}, c(M) r(M)\right\}
$$

In a paper which has only recently come to the attention of the author, Kung et al. [10] showed that for any simple, binary matroid M having no $A G(3,2)$-minor, $|E(M)| \leq\binom{ r(M)+1}{2}$, when $r(M) \geq 5$. In addition, they also show that for $r(M)=r$, the matroid $M\left(K_{r+1}\right)$ is the unique matroid meeting the bound when $r \geq 6$. Their proof uses a computer check to verify the above bound for matroids of rank 5.

The bound in Theorem 1.1 can be improved using the following bound involving the circumference:
Theorem 1.5 (McGuinness [11]). Let M be a simple, binary matroid having no F_{7}-minor. Then $|E(M)| \leq \frac{1}{2} c(M) r(M)$.
It is worth remarking that the above bound extends a well-known result of Erdős and Gallai (see [1,4]), which states that for a simple graph G on n vertices having circumference $c,|E(G)| \leq \frac{1}{2} c(n-1)$. We believe that similar bounds are possible for the class \mathscr{P}_{k} in general: we venture the following conjecture:

Conjecture 1.6. For all $k \geq 2$ there is a constant $\alpha(k)>0$ depending only on k such that $|E(M)| \leq \alpha(k) c(M) r(M)$ for all simple matroids $M \in \mathscr{P}_{k}$.

For \mathscr{P}_{3}, it seems possible to achieve the bound $|E(M)| \leq \frac{15}{4} r(M) c(M)$ by changing Kung's proof in [9], although I have not worked through all the details. In Section 5, we show that the above conjecture holds with \mathscr{N}_{k} in place of \mathscr{P}_{k}. In Section 4, we show that growth rate bounds for the class \mathscr{N}_{k} is related to the growth rate for the class of binary matroids having circumference at most $k-1$.

2. Bounding the number of triangles

We shall refer to a circuit with two elements as a digon. A Hamilton circuit in a matroid is a spanning circuit. An element e is called a chord of a circuit C if $e \in \operatorname{cl}(C) \backslash C$. In this section, we shall prove that if $M \in \mathscr{N}_{4}$ is simple and has a Hamilton circuit C, then there are at most $|C|-1$ triangles which contain a fixed element $e \in C$. It turns out that this is the key ingredient for the proof of Theorem 1.3. To do this, we shall need the following useful observation:

Lemma 2.1. Let M be a simple binary matroid and let T_{1}, \ldots, T_{n} be triangles containing an element e. Let e_{1}, \ldots, e_{n} be distinct elements where $e_{i} \in T_{i} \backslash e, i=1, \ldots, n$ and let $M_{1}=\operatorname{si}(M / e)$. Assuming $e_{1}, \ldots, e_{n} \in E\left(M_{1}\right)$, if there is a circuit in M_{1} containing k of the elements e_{1}, \ldots, e_{n}, then M has a k-spike minor.

https://daneshyari.com/en/article/6423400

Download Persian Version:
https://daneshyari.com/article/6423400

Daneshyari.com

[^0]: E-mail address: smcguinness@tru.ca.
 http://dx.doi.org/10.1016/j.disc.2014.02.006 0012-365X/© 2014 Elsevier B.V. All rights reserved.

