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a b s t r a c t

For a simple binarymatroidM having no n-spikeminor, we examine the problemof bound-
ing |E(M)| as a function of its rank r(M) and circumference c(M). In particular, we show
that |E(M)| ≤ min


r(M)(r(M)+3)

2 , c(M)r(M)

for any simple, binary matroid M having no

4-spikeminor. As a consequence, the samebound applies to simple, binarymatroids having
no AG(3, 2)-minor.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper concerns a problem in extremal matroid theory, an area of matroid theory which, much like extremal graph
theory, is rich with numerous problems. For two surveys on this subject, see [2,8]. One general problem is, given a certain
minor-closed class of matroids, find good bounds, as a function of rank, for the maximum size of a simple matroid in this
class. Of particular interest are classes of binary matroids with certain forbidden minors. For k ≥ 2, let Pk be the class of
binary matroids having no PG(k, 2)-minor. Finding sharp bounds for Pk is an extremely hard problem, although we have
the following good bound for the class P2 due to Heller [7] and Murty [12]:

Theorem 1.1 (Heller, Murty). If M ∈ P2 is simple, then |E(M)| ≤


r(M)+1

2


.

For binary minor-closed classes of matroids which contain P2, the problem of bounding matroid size becomes quite
tricky. In [9], Kung showed that |E(M)| ≤

15
4


r(M)+1

2


for all simple M ∈ P3. When considering larger classes containing

P2, it is useful to consider single element extensions of F7, for example, the affine geometry AG(3, 2). One may ask, what
bounds are possible for the class of binary matroids containing no AG(3, 2)-minor? Another natural minor-closed class of
matroids to consider is the class of binary matroids with no n-spike minor. An n-spike is a simple matroidM consisting of n
triangles T1, . . . , Tn meeting at a point e where

(i) r(T1 ∪ · · · ∪ Tk) = k + 1, k = 1, . . . , n − 1

and

(ii) r(T1 ∪ · · · ∪ Tn) = n.

Note that a binary 3-spike is the Fano plane F7. N-spikes appear in numerous places in the literature on matroids: for
example, see [3,5,14,15]. In particular, they are important in the theory of matroid representation. It was shown in [14]
that n-spikes can have an unbounded number of inequivalent GF(q)-representations for q ≥ 7. For k ≥ 3, let Nk be the set
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of binary matroids having no k-spike minor. Then P2 ⊂ Nk for all k ≥ 3. It is also easy to show that every non-trivial binary
extension of the affine geometry AG(3, 2) is either isomorphic to a 4-spike or its dual (see Oxley [13]). For this reason, the
class N4 is interesting and relevant here. In this paper, we focus on finding good bounds for the maximum size of simple
matroids in N4. It should be mentioned that ‘‘growth rates’’ of classes like Nk and Pk are bounded by quadratic functions of
rank. More generally, let M be a minor-closed class of matroids. The following theorem due to Geelen, Kung, and Whittle
[6] demonstrates that the growth of the size of thematroids in M , when it is finite, is either linear, quadratic, or exponential
in terms of the rank.

Theorem 1.2 (Geelen, Kung, Whittle). Let M be a minor-closed class of matroids. Then one of the four possibilities below holds:

(i) There exists α > 0 such that |E(M)| ≤ αr(M) for all simple M ∈ M .
(ii) M contains all graphic matroids and there exists α > 0 such that |E(M)| ≤ αr(M)2 for all simple M ∈ M .
(iii) For some power of q,M contains all GF(q)-representablematroids, and |E(M)| ≤ αqr(M) for someα > 0 and for all M ∈ M .
(iv) M contains all rank two matroids.

As a consequence of the above theorem, there exist constants α(k) > 0 and β(k) > 0 such that |E(M)| ≤ α(k)r(M)2 for
all simple M ∈ Nk, and |E(M)| ≤ β(k)r(M)2 for all simple M ∈ Pk. Let c(M) denote the circumference of a matroid M , the
size of a largest circuit. The main result of this paper, which we shall prove in the next two sections, is the following bound
for N4:

Theorem 1.3. Let M be a simple, binary matroid having no 4-spike minor. Then

|E(M)| ≤ min

r(M)(r(M) + 3)

2
, c(M)r(M)


.

Since every 4-spike contains AG(3, 2) as a minor, N4 contains the class of matroids having no AG(3, 2)-minor, and
consequently, we have the following corollary to the above theorem:

Corollary 1.4. Let M be a simple, binary matroid having no AG(3, 2)-minor. Then

|E(M)| ≤ min

r(M)(r(M) + 3)

2
, c(M)r(M)


.

In a paper which has only recently come to the attention of the author, Kung et al. [10] showed that for any simple, binary
matroid M having no AG(3, 2)-minor, |E(M)| ≤


r(M)+1

2


, when r(M) ≥ 5. In addition, they also show that for r(M) = r ,

the matroidM(Kr+1) is the unique matroid meeting the bound when r ≥ 6. Their proof uses a computer check to verify the
above bound for matroids of rank 5.

The bound in Theorem 1.1 can be improved using the following bound involving the circumference:

Theorem 1.5 (McGuinness [11]). Let M be a simple, binary matroid having no F7-minor. Then |E(M)| ≤
1
2 c(M)r(M).

It is worth remarking that the above bound extends a well-known result of Erdős and Gallai (see [1,4]), which states that
for a simple graph G on n vertices having circumference c , |E(G)| ≤

1
2 c(n − 1). We believe that similar bounds are possible

for the class Pk in general: we venture the following conjecture:

Conjecture 1.6. For all k ≥ 2 there is a constant α(k) > 0 depending only on k such that |E(M)| ≤ α(k)c(M)r(M) for all
simple matroids M ∈ Pk.

ForP3, it seems possible to achieve the bound |E(M)| ≤
15
4 r(M)c(M) by changing Kung’s proof in [9], although I have not

worked through all the details. In Section 5, we show that the above conjecture holds with Nk in place of Pk. In Section 4,
we show that growth rate bounds for the class Nk is related to the growth rate for the class of binary matroids having
circumference at most k − 1.

2. Bounding the number of triangles

We shall refer to a circuit with two elements as a digon. A Hamilton circuit in a matroid is a spanning circuit. An element
e is called a chord of a circuit C if e ∈ cl(C) \ C . In this section, we shall prove that if M ∈ N4 is simple and has a Hamilton
circuit C , then there are at most |C | − 1 triangles which contain a fixed element e ∈ C . It turns out that this is the key
ingredient for the proof of Theorem 1.3. To do this, we shall need the following useful observation:

Lemma 2.1. Let M be a simple binary matroid and let T1, . . . , Tn be triangles containing an element e. Let e1, . . . , en be distinct
elements where ei ∈ Ti \ e, i = 1, . . . , n and let M1 = si(M/e). Assuming e1, . . . , en ∈ E(M1), if there is a circuit in M1
containing k of the elements e1, . . . , en, then M has a k-spike minor.
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