
Discrete Mathematics 324 (2014) 78–84

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note

On the locality of codeword symbols in non-linear codes
Michael Forbes a,1, Sergey Yekhanin b

a MIT, United States
b Microsoft Research, United States

a r t i c l e i n f o

Article history:
Received 15 March 2013
Received in revised form 12 November
2013
Accepted 24 January 2014
Available online 4 March 2014

Keywords:
Error-correcting codes
Non-linear codes
Locality

a b s t r a c t

Coordinate i of an error-correcting code has locality r if its value is determined by some
r other coordinates. Recently an optimal trade-off between information locality of linear
codes, code distance, and redundancy has been obtained. Furthermore, for linear codes
meeting this trade-off, structure theorems were derived. In this work we generalize the
trade-off and structure theorems to non-linear codes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We say that a certain coordinate of an error-correcting code has locality r if, when erased, the value at this coordinate
can be recovered by accessing at most r other coordinates. Motivated by applications to data storage [3] the authors of [2]
introduced (r, d)-codes, which are systematic codes that have distance d and thus tolerate up to d − 1 erasures, but also
have the property that any information coordinate has locality r or less. They established that in all linear [n, k, d]q codes
with the (r, d)-property

n ≥ k+

k
r


+ d− 2. (1.1)

In what follows we refer to codes that meet (1.1) with equality as optimal. A construction of [1] implies that optimal codes
exist for all values of parameters.

While locality of data symbols and code distance are the two primary considerations in the design of codes for data
storage applications, locality of parity coordinates is also important. Parity locality (in the class of optimal (r, d)-codes) has
been considered in [2]. In the natural setting of r|k, the lower-bound argument of [2] yields structure theorems for optimal
linear codes. These theorems are particularly strong when d < r + 3. In that case they imply tight lower bounds for parity
locality.

Coding theory knowsmany examples of problemswhere non-linear codes improve upon the best available constructions
of linear codes, e.g., [6]. While there is currently no evidence that non-linearity facilitates better (r, d)-codes, the novelty of
this regime suggests that further study is required. In particular, it is natural to ask whether non-linearity can help reduce
redundancy of (r, d)-codes or parity locality of optimal (r, d)-codes. The first question has been addressed in [4,5] where
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the inequality (1.1) was generalized to non-linear setting under the stronger assumption that every code coordinate (and
not just information coordinates) has locality r.

In this paper we strengthen the results of [4,5] and establish the inequality (1.1) for general non-linear (r, d)-codes. We
then use our lower-bound argument to derive structure theorems for optimal non-linear codes. Our results imply that lower
bounds for parity locality of optimal (r, d)-codes that were derived in [2] in the linear setting also apply to non-linear codes.
Therefore the answers to the two questions above are both negative.

1.1. Our techniques

Our new proof of the bound (1.1) follows the same high level strategy as the proofs in [2,5]. We assume that the
bound (1.1) is violated and use an iterative argument to arrive at a code that violates the distance bound. Unlike [5],
our iterative steps use elementary coordinate restrictions instead of entropy inequalities. This makes it easier to use our
argument as a basis for structure theorems.

The main technical problem that we have to address going from the lower bound to structure theorems is that of
reversibility of the local constraints. In linear codes, any local constraint on coordinates in the code must be a linear
constraint, and linear constraints are trivially reversible, in that knowing all but 1 coordinate in the constraint always
determines that coordinate, regardless of the identity of that 1 coordinate. However, for non-linear codes it is possible to
have local constraints that are not reversible. For example, it is possible for the coordinates {i, i′} to determine the coordinate
i′′, but for the coordinates {i′, i′′} to not determine the coordinate i. However, we show that for optimal (r, d)-codes, even
in the non-linear case, all locality constraints must be reversible. Once this is established, the structural results of [2] (and
thus the parity locality lower bounds) can then be extended to the non-linear case.

2. Preliminaries

We will first fix some notation, then define the objects we will be considering.

2.1. Notation

Throughout, we consider codeswhichmay be non-linear over an arbitrary alphabetΣ , where |Σ | = q ≥ 2 is an arbitrary
integer. Given two vectors x⃗, y⃗ ∈ Σn, ∆(x⃗, y⃗) will denote the unnormalized Hamming distance between x⃗ and y⃗. For an
integer n ≥ 0, [n] denotes the set {1, . . . , n}, where [0] will be understood as the empty-set. For S ⊆ [n], we will denote
x⃗|S for the sequence of symbols in x⃗ with coordinates in S. When S = {i} we will just write x⃗|i. For disjoint sets A and B, we
write A ⊔ B to denote their disjoint union.

2.2. Definitions

Recall the definition of a code, which we do not assume to be linear.

Definition 2.1. An (n, K , d)q code is a subset C ⊆ Σn with size |C| = K , such that for any x⃗ ≠ y⃗ ∈ C, ∆(x⃗, y⃗) ≥ d. If
C ′ ⊆ C then C ′ is a sub-code of C. The parameter n will be referred to as the block-length, k = logq K the dimension and d
the distance.

The code is systematic if k ∈ Z, and there is an encoding function Enc : Σk
→ Σn such that for x⃗ ∈ Σk, Enc(x⃗)|i = x⃗|i,

for i ∈ [k].
A code is maximum distance separable (MDS) if n = logq K + d− 1.

A systematic code takes on all qk values in its first k coordinates, and the values of these coordinates determine the rest
of the codeword. The first k coordinates of the codewords are thus referred to as the information symbols, other coordinates
will be called parity symbols. This work will be interested in codes with local constraints on the information symbols.

Definition 2.2. A systematic (n, K , d)q code has information locality r if for every i ∈ [k], there is a size≤ r subset S ⊆ [n]\{i}
such that for any x⃗ ∈ C, x⃗|i is determined by x⃗|S .

Other symbols, other than the information symbols, can also have locality, and occasionally we will use this.

3. Locality lower bounds

In this section we establish lower bounds on the block-length of codes with small information locality. We will then
prove structural results for codes meeting this lower bound. As we will often use it, we now prove the Singleton bound.
Recall that MDS codes are those that exactly meet this bound.



Download English Version:

https://daneshyari.com/en/article/6423401

Download Persian Version:

https://daneshyari.com/article/6423401

Daneshyari.com

https://daneshyari.com/en/article/6423401
https://daneshyari.com/article/6423401
https://daneshyari.com

