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a b s t r a c t

For a graph G and a subgraph H (called a backbone graph) of G, a backbone k-coloring of G
with respect to H is a proper vertex coloring ofG using colors from the set {1, 2, . . . , k}, with
an additional condition that colors for any two adjacent vertices inH must differ by at least
two. The backbone chromatic number of G over H , denoted by BBC(G,H), is the smallest
k of a backbone k-coloring admitted by G with respect to H . Broersma, Fomin, Golovach,
and Woeginger (2007) [2] showed that BBC(G,H) ≤ 2χ(G) − 1 holds for every G and H;
moreover, for every n there exists a graph G with a spanning tree T such that χ(G) = n
and the bound is sharp. To answer a question raised in Broersma et al. (2007) [2], Miškuf,
Škrekovski, and Tancer (2009) [16] proved that for any n there exists a triangle-free graphG
with a spanning tree T such that χ(G) = n and BBC(G, T ) = 2n − 1. We extend this result
by showing that for any positive integers n and l, there exists a graph G with a spanning
tree T such that G has girth at least l, χ(G) = n, and BBC(G, T ) = 2n − 1.

© 2013 The Authors. Published by Elsevier B.V.

1. Introduction

Backbone coloring is a model for the channel assignment problem introduced by Hale [11]. The task in the channel
assignment problem is to assign channels to a set of transmitters such that interference is avoided. Usually interference
is divided into two types: strong interference and weak interference. The channels assigned to two transmitters with strong
interference should be far apart, and channels assigned to two transmitters with weak interference should be distinct. A
well studied graph theory model for the channel assignment problem is the distance-two labeling of graphs. We construct a
graph where vertices represent the transmitters. If two vertices in the model graph are adjacent then stronger interference
might occur between the two corresponding transmitters so the separation of these two channels needs to be at least two;
and for two vertices that are distance two apart (that is, they are not adjacent but they share a common neighbor in G) then
weak interference might occur between the two corresponding transmitters so they must receive different channels.

Backbone coloring of a graph is anothermodel for the channel assignment problem, where edges in G are of two different
types. Let H be a subgraph of G. An edge of G is either an edge of H which represents strong interference, or not an edge of H
which represents weak interference. The subgraph H is called the backbone of G. In a backbone coloring of Gwith backbone
H , colors assigned to a pair of vertices adjacent in H must be at least two apart, while vertices adjacent in G but not in H
must get different colors. To be precise, a backbone k-coloring of G with respect to H is a function f : V (G) → {1, 2, . . . , k}
such that the following are satisfied:

|f (u) − f (v)| ≥


2 if uv ∈ E(H);
1 if uv ∈ E(G) \ E(H).

∗ Corresponding author.
E-mail addresses: yhbu@zjnu.edu.cn (Y. Bu), dliu@calstatela.edu (D.D.-F. Liu), xdzhu@zjnu.edu.cn, xudingzhu@gmail.com (X. Zhu).

0012-365X © 2013 The Authors. Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.disc.2013.05.004

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://dx.doi.org/10.1016/j.disc.2013.05.004
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.disc.2013.05.004&domain=pdf
mailto:yhbu@zjnu.edu.cn
mailto:dliu@calstatela.edu
mailto:xdzhu@zjnu.edu.cn
mailto:xudingzhu@gmail.com
http://dx.doi.org/10.1016/j.disc.2013.05.004
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


1800 Y. Bu et al. / Discrete Mathematics 313 (2013) 1799–1804

The backbone chromatic number of G over H , denoted byBBC(G,H), is theminimum k forwhich there is a backbone k-coloring
of Gwith respect to H .

For a graph G, the square of G, denoted by G2, has V (G) as the vertex set and uv ∈ E(G2) if uv ∈ E(G) or there is a 2-path
from u to v inG. A distance-two labeling (also known as L(2, 1)-labeling) is the same as a backbone coloring ofG2 with respect
to the backboneG (however, a distance-two labeling allows 0 as a colorwhile a backbone coloring uses only positive integers,
hence a distance-two k-labeling of a graph G is a backbone (k + 1)-coloring of G2 with respect to G). Introduced by Griggs
and Yeh [10], distance-two labeling has been studied extensively in the past three decades (cf. [5–10,20,12–15,18,19,21]).

Backbone coloring was first introduced by Broersma et al. [1] and has been investigated widely by several authors in
recent years (cf. [1–4,16,17]). Broersma, Fomin, Golovach, and Woeginger [2] studied the BBC(G,H)-number when the
backbone graph H is a spanning tree or a spanning path (if it exists) of G. Miškuf, Škrekovski, and Tancer [17] proved that
for a graph Gwith maximum degree ∆ and backbone H being a d-degenerated subgraph of G, then BBC(G,H) ≤ ∆ + d+ 1;
moreover, if H is a matching then BBC(G,H) ≤ ∆ + 1.

Denote the chromatic number of a graph G by χ(G). By properly coloring the vertices of G from the set {1, 3, 5, . . . ,
2χ(G) − 1}, one obtains a backbone (2χ(G) − 1)-coloring of G with respect to any subgraph H . Therefore, for any graph G
and any subgraph H of G, BBC(G,H) ≤ 2χ(G) − 1. It was proved in [2] that for any positive integer n, there exists a graph
G and a spanning tree T of G such that χ(G) = n and BBC(G, T ) = 2χ(G) − 1. The graphs G used in the proof of this result
are complete n-partite graphs, which contain many triangles.

An interesting question asked in [2] was whether there exists a constant c such that BBC(G, T ) ≤ χ(G) + c holds for all
triangle-free graphsG and spanning tree T ofG.Miškuf, Škrekovski, and Tancer [16] answered this question in the negative by
showing that for any n there exists a triangle-free graphGwith a spanning tree T such thatχ(G) = n and BBC(G, T ) = 2n−1.
The graphs constructed in [16], by a process similar to the construction ofMycielski graphs, are infinite and contain 4-cycles.
Naturally, the authors raised the question regarding the existence of a graph Gwith large girth (i.e., the length of a shortest
cycle in G) such that BBC(G, T ) = 2χ(G) − 1 for some spanning tree T . We answer this question in positive.

Theorem 1. For any positive integers n and l, there exists a graph Gwith girth greater than l and χ(G) = n, and a spanning forest
T of G such that BBC(G, T ) = 2n − 1.

The proof of Theorem 1 is presented in the next two sections.

2. Construction of G and T

The construction of G and T in Theorem 1will be based on the following result which seems to be a folklore. But we could
not find a referencewith the exact statement. For the completeness of the paper, we provide here an easy probabilistic proof.

Lemma 2. For any positive integers n, l,m0, for each δ > 0, there is an n-partite graph G with partite sets V1, V2, . . . , Vn such
that the following hold:
• |Vi| = m ≥ m0.
• G has χ(G) = n and girth greater than l.
• For any 1 ≤ i ≠ j ≤ n, for any A ⊂ Vi, B ⊂ Vj with |A|, |B| ≥ δm, there is an edge between A and B.

Proof. Let ϵ = 1/(2l),m be a sufficiently large integer, and p = m−1+ϵ . Let G be a random graph with vertex set
V = V1 ∪ V2 · · · ∪ Vn, where |Vi| = 2m, and uv is an edge of G with probability p for any u ∈ Vi, v ∈ Vj (1 ≤ i < j ≤ n). Let
X be the random variable which is the number of cycles in G of length at most l. The expectation of X is

E(X) ≤

l
i=1

(2nm)i

2i
pi ≤ l(2nmp)l = l(2n)lm1/2,

where (x)i = x(x − 1) · · · (x − i + 1). Hence

P(X > m) ≤
E(X)

m
→ 0, as m → ∞.

Let Y be the number of pairs of sets A, B such that A ⊂ Vi, B ⊂ Vj with i ≠ j, |A|, |B| ≥ δm, and E[A, B] = ∅ (that is, there
are no edges between A and B). The expectation of Y is

E(Y ) ≤ 22nm(1 − p)(δm)2
≤ e2nm−pδ2m2

= e2nm−δ2m1+ϵ
→ 0, as m → ∞.

Hence

P(Y ≥ 1) ≤ E(Y ) → 0, as m → ∞.

So for m sufficiently large, P(X > m) < 1/2 and P(Y ≥ 1) < 1/2, and hence P((X ≤ m) ∧ (Y = 0)) > 0. This implies that
there is a graph G in which the number of short cycles is less thanm and for any pair A ⊂ Vi, B ⊂ Vj with i ≠ j, |A|, |B| ≥ δm,
we have E[A, B] ≠ ∅. Delete m vertices from each Vi (for i = 1, 2, . . . , n) so that each short cycle intersects the deleted
vertices. The resulting graph G′ has girth at least l + 1.
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