Determinants of grids, tori, cylinders and Möbius ladders

Khodakhast Bibak ${ }^{\text {a }}$, Roberto Tauraso ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
${ }^{\text {b }}$ Dipartimento di Matematica, Università di Roma "Tor Vergata", 00133 Roma, Italy

ARTICLE INFO

Article history:

Received 19 December 2012
Accepted 11 March 2013
Available online 3 April 2013

Keywords:

Determinant
Cartesian product
Grid
Torus
Cylinder
Möbius ladder

Abstract

Recently, Bieñ [A. Bieñ, The problem of singularity for planar grids, Discrete Math. 311 (2011) 921-931] obtained a recursive formula for the determinant of a grid. Also, recently, Pragel [D. Pragel, Determinants of box products of paths, Discrete Math. 312 (2012) 1844-1847], independently, obtained an explicit formula for this determinant. In this paper, we give a short proof for this problem. Furthermore, applying the same technique, we get explicit formulas for the determinant of a torus, that of a cylinder, and that of a Möbius ladder.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and results

We denote by $A(G)$ the adjacency matrix of a graph G. A path (cycle) on n vertices is denoted by P_{n} (resp., C_{n}). Given two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, their Cartesian product $G_{1} \square G_{2}$ is the graph with vertex set $V_{1} \times V_{2}$ and edge set

$$
\left\{\left((u, v),\left(u^{\prime}, v\right)\right):\left(u, u^{\prime}\right) \in E_{1}, v \in V_{2}\right\} \bigcup\left\{\left((u, v),\left(u, v^{\prime}\right)\right): u \in V_{1},\left(v, v^{\prime}\right) \in E_{2}\right\} .
$$

The Cartesian product produces many important classes of graphs. For example, a grid (also called a mesh) is the Cartesian product of two paths, a torus (also called a toroidal grid or a toroidal mesh) is the Cartesian product of two cycles, and a cylinder is the Cartesian product of a path and a cycle. One can generalize these definitions to more than two paths or cycles. These classes of graphs are widely used computer architectures (e.g., grids are widely used in multiprocessor VLSI systems) [7].

The nullity of a graph G of order n, denoted by $\eta(G)$, is the multiplicity of 0 in the spectrum of G. Clearly, $\eta(G)=n-r(A(G))$, where $r(A(G))$ is the rank of $A(G)$. The nullity of a graph is closely related to the minimum rank problem for a family of matrices associated with a graph (see, e.g., [5] and the references therein). Nullity of a (molecular) graph (specifically, determining whether it is positive or zero) also has important applications in quantum chemistry and Hückel molecular orbital (HMO) theory (see, e.g., [6] and the references therein). A famous problem, posed by Collatz and Sinogowitz in 1957 [4], asks for the characterization of all graphs with positive nullity. Clearly, $\operatorname{det} A(G)=0$ if and only if $\eta(G)>0$. So, examining the determinant of a graph is a way to attack this problem. But there seems to be little published on calculating the determinants of various classes of graphs.

Recently, Bieñ [2] obtained a recursive formula for the determinant of a grid. Also, recently, Pragel [8], independently, obtained an explicit formula for this determinant (see (1) below). Here, using trigonometric identities, we give a short proof for this problem. Furthermore, applying the same technique, we get explicit formulas for the determinant of a torus, and that of a cylinder.

[^0]Theorem 1. Let $m>1$ and $n>1$ be integers. Then

$$
\begin{align*}
& \operatorname{det} A\left(P_{m-1} \square P_{n-1}\right)= \begin{cases}(-1)^{\frac{(m-1)(n-1)}{2}} & \text { if } \operatorname{gcd}(m, n)=1 ; \\
0 & \text { otherwise. }\end{cases} \tag{1}\\
& \operatorname{det} A\left(C_{m} \square C_{n}\right)= \begin{cases}4^{\operatorname{gcd}(m, n)} & \text { if m and } n \text { are odd; } \\
0 & \text { otherwise. }\end{cases} \tag{2}\\
& \operatorname{det} A\left(P_{m-1} \square C_{n}\right)= \begin{cases}m & \text { if } n \text { is odd and } \operatorname{gcd}(m, n)=1 ; \\
(-1)^{m-1} m^{2} & \text { if } n \text { is even and } \operatorname{gcd}(m, n / 2)=1 ; \\
0 & \text { otherwise. }\end{cases} \tag{3}
\end{align*}
$$

Note that for $m=2$, (1) and (3) give the following well-known determinants:

$$
\operatorname{det} A\left(P_{n-1}\right)=\left\{\begin{array}{ll}
(-1)^{\frac{n-1}{2}} & \text { if } n \text { is odd; } \\
0 & \text { otherwise. }
\end{array} \quad \text { and } \quad \operatorname{det} A\left(C_{n}\right)= \begin{cases}2 & \text { if } n \text { is odd; } \\
-4 & \text { if } n \equiv 2(\bmod 4) \\
0 & \text { otherwise }\end{cases}\right.
$$

Our proof technique or its modifications may be useful in other situations with similar flavor (see, e.g., [1]). For example, let us consider the Möbius ladder $M_{2 n}$, the graph on $2 n$ vertices whose edge set is the union of the edge set of $C_{2 n}$ and $\left\{\left(v_{i}, v_{n+i}\right): i=1, \ldots, n\right\}$. We prove:

Theorem 2. Let $n>1$ be an integer. Then

$$
\operatorname{det} A\left(M_{2 n}\right)= \begin{cases}-3 & \text { if } n \equiv \pm 2(\bmod 6) \tag{4}\\ -9 & \text { if } n \equiv \pm 1(\bmod 6) \\ 0 & \text { otherwise }\end{cases}
$$

2. Techniques and proofs

The starting point of our calculations is the following well-known theorem which gives the eigenvalues of the Cartesian product of two graphs (see, e.g., [9, p. 587]).

Theorem 3. Let G_{1} be a graph of order m, and G_{2} be a graph of order n. If the eigenvalues of $A\left(G_{1}\right)$ and $A\left(G_{2}\right)$ are, respectively, $\lambda_{1}\left(G_{1}\right), \ldots, \lambda_{m}\left(G_{1}\right)$ and $\lambda_{1}\left(G_{2}\right), \ldots, \lambda_{n}\left(G_{2}\right)$, then the eigenvalues of $A\left(G_{1} \square G_{2}\right)$ are precisely the numbers $\lambda_{i}\left(G_{1}\right)+\lambda_{j}\left(G_{2}\right)$, for $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$.

We also need the following trigonometric identities, which might be of independent interest.
Lemma 4. Let n be a positive integer and let $a \in \mathbb{Z}$ be such that $\operatorname{gcd}(a, n)=1$. Then for any real number x,

$$
\begin{equation*}
\sin (n x)=2^{n-1}(-1)^{\frac{(a-1)(n-1)}{2}} \prod_{j=0}^{n-1} \sin \left(x+\frac{a j \pi}{n}\right) \tag{5}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\prod_{j=1}^{n-1} \sin \left(\frac{a j \pi}{n}\right)=(-1)^{\frac{(a-1)(n-1)}{2}} \cdot \frac{n}{2^{n-1}} \tag{6}
\end{equation*}
$$

and

$$
\prod_{j=1}^{n-1} \cos \left(\frac{a j \pi}{n}\right)= \begin{cases}(-1)^{\frac{a(n-1)}{2}} \cdot \frac{1}{2^{n-1}} & \text { if } n \text { is odd } \tag{7}\\ 0 & \text { otherwise }\end{cases}
$$

Proof. Let $\omega=e^{\pi a I / n}$, where $I=\sqrt{-1}$. Then, since $\left\{\omega^{-2 j}: j=0, \ldots, n-1\right\}$ are all the nth roots of unity, it follows that

$$
\prod_{j=0}^{n-1}\left(z-\omega^{-2 j}\right)=z^{n}-1
$$

https://daneshyari.com/en/article/6423418

Download Persian Version:

https://daneshyari.com/article/6423418

Daneshyari.com

[^0]: E-mail addresses: kbibak@uwaterloo.ca (K. Bibak), tauraso@mat.uniroma2.it (R. Tauraso).

