

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

f-factors, complete-factors, and component-deleted subgraphs

Kenji Kimura

Department of Management Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

ARTICLE INFO

Article history: Received 25 July 2007 Received in revised form 5 March 2013 Accepted 9 March 2013 Available online 1 April 2013

Keywords: f-factor Complete-factor Component-deleted subgraph

ABSTRACT

In this paper, we consider the relationship between f-factors and component-deleted subgraphs of graphs. Let G be a graph. A factor F of G is a complete-factor if every component of F is complete. If F is a complete-factor of G, and G is a component of G, then G - V(G) is a component-deleted subgraph. Let G denote the number of components of G. Let G be an integer-valued function defined on G with $\sum_{x \in V(G)} f(x)$ even. Enomoto and Tokuda [H. Enomoto, T. Tokuda, Complete-factors and G-factors, Discrete Math. 220 (2000) 239–242] proved that if G is a complete-factor of G with G with G be a component G of G, then G has an G-factor. We extend their result, and show that it suffices to consider a complete-factor of G and G component G of G. Let G be a complete-factor of G and G component G of G is each component G of G is even and G component G component G is even and G component G of G is even and G component G of G is even and G component G of G is even and G component G is even and G component G of G

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider finite undirected graphs that may have loops and multiple edges. Let G be a graph. For $x \in V(G)$, we denote by $\deg_G(x)$ the degree and by $N_G(x)$ the set of neighbors of x in G. For a subset S of V(G), we denote by G[S] the subgraph of G induced by G[S]. For disjoint subsets G[S] and G[S] the number of edges joining G[S] and G[S] in the number of edges joining G[S] and G[S] in the number of edges joining G[S] and G[S] and a component G[S] of G[S] is sometimes described as G[S]. We denote by G[S] the number of components of G[S].

Let f be an integer-valued function defined on V(G). A spanning subgraph F of G such that $\deg_F(x) = f(x)$ for each $x \in V(G)$ is an f-factor of G. When f is a constant function taking a value f, an f-factor is an f-factor. Note that if G has an f-factor, then $\sum_{x \in V(G)} f(x)$ is even. When no fear of confusion arises, we often identify an f-factor with its edge set. In other words, for a graph G, we say that a subset f of f is an f-factor if the spanning subgraph of G with edge set G is an G-factor. Let G be a set of graphs. If each component G of a spanning subgraph G is isomorphic to some member of G, then G is an G-factor. Let G denote the complete graph on G vertices. Let G be the family of all complete graphs. We call a G-factor a complete-factor. We sometimes regard a complete-factor as the set of its components. In this paper, G-factor is the sum over all the components G of G-factor and a subset G-factor is G-factor and a subset G-factor is G-factor in G-factor is G-factor in G-factor in G-factor in G-factor is G-factor in G-factor in

E-mail address: kimura@ms.kagu.tus.ac.jp.

Katerinis [2] proved that for even integer r, if G - x has an r-factor for each $x \in V(G)$, then G has an r-factor. Enomoto and Tokuda generalized this result to general f-factors of a graph G with a complete-factor F. They proved the following theorem.

Theorem A (Enomoto and Tokuda [1]). Let G be a graph and F be a complete-factor of G with $c(F) \ge 2$. If $f: V(G) \to \mathbf{Z}^+ \cup \{0\}$ satisfies $f(V(G)) \equiv 0 \pmod{2}$ and G - V(C) has an f-factor for each component C of F, then G has an f-factor.

Immediately, we have the following corollary from Theorem A by setting $F \cong |V(G)|K_1$.

Corollary B. Let G be a graph of order at least two. If $f:V(G)\to \mathbf{Z}^+\cup\{0\}$ satisfies $f(V(G))\equiv 0\pmod 2$ and G-x has an f-factor for each vertex $x\in G$, then G has an f-factor.

In Corollary B, every vertex x is examined to satisfy the condition that G - x has an f-factor. In [3], the present author showed that when $F \cong |V(G)|K_1$ as in Corollary B, we may reduce the number of components of F whose deletions we need to consider under certain circumstances, These results are contained in Theorems C and D below.

Theorem C (*Kimura* [3]). Let *G* be a graph, and let *X* be a subset of V(G) with $|V(G) - X| \ge 2$ and $\deg_G(X) \le 2|V(G) - X| - 1$. If $f: V(G) \to \mathbb{Z}^+ \cup \{0\}$ satisfies $f(V(G)) \equiv 0 \pmod{2}$ and G - x has an f-factor for each $x \in V(G) - X$, then G has an f-factor.

Theorem D (*Kimura* [3]). Let G be a graph without isolated vertices, and let X be a subset of V(G) with $|V(G) - X| \ge 2$ and $\deg_G(X) \le 2|V(G) - X| + |X| - 3$. When |X| = 1, assume $\deg_G(X) \le 2|V(G) - X| - 1$. If $f: V(G) \to \mathbf{Z}^+ \cup \{0\}$ satisfies $f(V(G)) \equiv 0 \pmod{2}$ and G - x has an f-factor for each $x \in V(G) - X$, then G has an f-factor.

In the current paper our main result combines the general complete-factor of Theorem A with the notion of setting aside $X \subset V(G)$ which need not be examined in the component deleting process, as introduced in Theorems C and D. The result is Theorem 1.

Theorem 1. Let G be a graph, let X be a subset of V(G) and let F be a complete-factor of G - X with $c(F) \ge 2$. If $f: V(G) \to \mathbb{Z}^+ \cup \{0\}$ satisfies $f(V(G)) \equiv 0 \pmod{2}$ and G - V(C) has an f-factor for each component C of F, then G has an f-factor in the following cases:

- (i) $\deg_C(X) < c(F) 1$;
- (ii) c(F) is even and $\deg_G(X) \le c(F) + 1$;
- (iii) *G* has no isolated vertices and $\deg_G(X) \le c(F) + |X| 2$; or
- (iv) *G* has no isolated vertices, c(F) is even, and $\deg_G(X) \le c(F) + |X| 1$.

We note that when $X = \emptyset$, our theorem is equivalent to Theorem A. When $F \cong (|V(G)| - |X|)K_1$, comparing Theorem 1 with Theorems C and D, we find that the bounds in Theorems C and D are weaker. However, our main theorem is not restricted to the case that F has no edges. As such, Theorem 1 can be successfully applied in cases where the hypotheses of Theorems C and D fail to be satisfied.

The following example shows an instance where our main theorem allows us to conclude that G has an f-factor while Theorems C and D cannot be used to determine that G has an f-factor. Let us consider six complete graphs H_i with $1 \le i \le 6$. Assume $H_1 \cong K_1$ with $V(H_1) = \{v_{11}\}, H_j \cong K_2$ with $V(H_j) = \{v_{j1}, v_{j2}\}$ and $1 \le j \le 4$, and $1 \le k \le 6$. Let $1 \le k \le 6$. Let $1 \le k \le 6$ be the graph defined by

$$V(G) = \bigcup_{1 \le i \le 6} V(H_i),$$

$$E(G) = \bigcup_{1 \le i \le 6} E(H_i) \bigcup_{5 \le k \le 6} \{v_{11}v_{k1}, v_{11}v_{k2}, v_{k3}v_{31}, v_{k3}v_{41}\} \bigcup \{v_{21}v_{32}, v_{21}v_{42}, v_{22}v_{32}, v_{22}v_{42}, v_{32}v_{42}\}.$$

This graph is shown in Fig. 1. First, we use our Theorem 1 to show that G has an f-factor. Suppose $X = V(H_1)$. Let F be a complete-factor of G - X such that H_i is a component of F with $1 \le i \le 6$. Now $\deg_G(X) = 4 = c(F) - 1 = c(F) + |X| - 2$. Define $f: V(G) \to \mathbb{Z}^+ \cup \{0\}$ by f(x) = 2 for every vertex $x \in V(G)$. Clearly, f(V(G)) is even. Now we can easily check that $G - V(H_i)$ has an G-factor, G is even. Now that we cannot determine whether G has an G-factor by Theorem G or G. Since both Theorems G and G require that G - V(G) + i has an G-factor for each G is each G in Theorems G and G is each G in Theorems G and G is each G. Thus G is each G is each G is each G in Theorems G and G is each G in Theorems G and G is each G. Thus G is each G is each G is each G is each G in Theorems G and G is each G. Thus G is each G is each G is each G is each G in Theorems G and G is each G is

It should be noted that Theorem A cannot be used to determine that the graph G in this example has an f-factor. To see this we consider a complete-factor F of G. Since $G - v_{11}$ has no f-factor, if Theorem A is to be applied we must have the component C of F containing v_{11} non-trivial. Without loss of generality, C must also contain v_{51} . However, $G - \{v_{11}, v_{51}\}$ has no f-factor, so $V(C) = \{v_{11}, v_{51}, v_{52}\}$. Since G - V(C) does have an f-factor, consider the component D of F - V(C) containing v_{53} . Although G - V(C) has an f-factor, we show that G - V(D) has no f-factor. Since $G - v_{53}$ has no f-factor, D is not K_1 . If $V(D) = \{v_{53}, v_{31}\}$, then G - V(D) has no f-factor. Thus, we may assume $V(D) = \{v_{53}, v_{41}\}$. In this case also, it is easy to see that G - V(D) has no f-factor.

Thus Theorem 1 provides a genuine extension of Theorem A and the possibility of guaranteeing the existence of f-factors in some cases where Theorems C and D fail.

Download English Version:

https://daneshyari.com/en/article/6423420

Download Persian Version:

https://daneshyari.com/article/6423420

<u>Daneshyari.com</u>