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a b s t r a c t

In this paper, we consider the relationship between f -factors and component-deleted
subgraphs of graphs. LetG be a graph. A factor F ofG is a complete-factor if every component
of F is complete. If F is a complete-factor of G, and C is a component of F , then G − V (C)
is a component-deleted subgraph. Let c(G) denote the number of components of G. Let f be
an integer-valued function defined on V (G) with


x∈V (G) f (x) even. Enomoto and Tokuda

[H. Enomoto, T. Tokuda, Complete-factors and f -factors, Discrete Math. 220 (2000)
239–242] proved that if F is a complete-factor of G with c(F) ≥ 2, and G − V (C) has an
f -factor for each component C of F , then G has an f -factor. We extend their result, and
show that it suffices to consider a complete-factor of G − X for some specified X ⊂ V (G)
instead of G. Let F be a complete-factor of G− X with c(F) ≥ 2. If G− V (C) has an f -factor
for each component C of F , then G has an f -factor in each of the following cases: (1)


x∈X

degG(x) ≤ c(F) − 1; (2) c(F) is even and


x∈X degG(x) ≤ c(F) + 1; (3) G has no isolated
vertices and


x∈X degG(x) ≤ c(F) + |X | − 2; or (4) G has no isolated vertices, c(F) is even

and


x∈X degG(x) ≤ c(F) + |X | − 1. We show that the results in this paper are sharp in
some sense.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider finite undirected graphs thatmay have loops andmultiple edges. LetG be a graph. For x ∈ V (G),
we denote by degG(x) the degree and by NG(x) the set of neighbors of x in G. For a subset S of V (G), we denote by G[S] the
subgraph of G induced by S. For disjoint subsets S and T of V (G), we denote by eG(S, T ) the number of edges joining S and T .
If S or T is a singleton set {x}, we write x instead of {x}. For example, we write eG(x, T ) instead of eG({x}, T ). In particular, for
x, y ∈ V (G), eG(x, y) is the number of edges joining x and y. For a subset T ⊂ V (G) and a component C of G− T , eG(T , V (C))
is sometimes described as eG(T , C). We denote by c(G) the number of components of G.

Let f be an integer-valued function defined on V (G). A spanning subgraph F of G such that degF (x) = f (x) for each
x ∈ V (G) is an f -factor of G. When f is a constant function taking a value r , an f -factor is an r-factor. Note that if G has an
f -factor, then


x∈V (G) f (x) is even. When no fear of confusion arises, we often identify an f -factor with its edge set. In other

words, for a graph G, we say that a subset F of E(G) is an f -factor if the spanning subgraph of Gwith edge set F is an f -factor.
Let F be a set of graphs. If each component C of a spanning subgraph F of G is isomorphic to some member of F , then F is
anF -factor. Let Kn denote the complete graph on n vertices. LetK be the family of all complete graphs. We call aK-factor a
complete-factor. We sometimes regard a complete-factor as the set of its components. In this paper,


C∈F means to take the

sum over all the components C of F . For any function f (x) and a subset S of V (G), we define f (S) =


x∈S f (x). In particular,
degG(S) =


x∈S degG(x).
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Katerinis [2] proved that for even integer r , if G − x has an r-factor for each x ∈ V (G), then G has an r-factor. Enomoto
and Tokuda generalized this result to general f -factors of a graph G with a complete-factor F . They proved the following
theorem.

Theorem A (Enomoto and Tokuda [1]). Let G be a graph and F be a complete-factor of G with c(F) ≥ 2. If f : V (G) → Z+
∪ {0}

satisfies f (V (G)) ≡ 0 (mod 2) and G − V (C) has an f -factor for each component C of F , then G has an f -factor.

Immediately, we have the following corollary from Theorem A by setting F ∼= |V (G)|K1.

Corollary B. Let G be a graph of order at least two. If f : V (G) → Z+
∪ {0} satisfies f (V (G)) ≡ 0 (mod 2) and G − x has an

f -factor for each vertex x ∈ G, then G has an f -factor.

In Corollary B, every vertex x is examined to satisfy the condition that G − x has an f -factor. In [3], the present author
showed that when F ∼= |V (G)|K1 as in Corollary B, wemay reduce the number of components of F whose deletions we need
to consider under certain circumstances. These results are contained in Theorems C and D below.

Theorem C (Kimura [3]). Let G be a graph, and let X be a subset of V (G) with |V (G)−X | ≥ 2 and degG(X) ≤ 2|V (G)−X |− 1.
If f : V (G) → Z+

∪ {0} satisfies f (V (G)) ≡ 0 (mod 2) and G − x has an f -factor for each x ∈ V (G) − X, then G has an f -factor.

Theorem D (Kimura [3]). Let G be a graph without isolated vertices, and let X be a subset of V (G) with |V (G) − X | ≥ 2 and
degG(X) ≤ 2|V (G) − X | + |X | − 3. When |X | = 1, assume degG(X) ≤ 2|V (G) − X | − 1. If f : V (G) → Z+

∪ {0} satisfies
f (V (G)) ≡ 0 (mod 2) and G − x has an f -factor for each x ∈ V (G) − X, then G has an f -factor.

In the current paper our main result combines the general complete-factor of Theorem Awith the notion of setting aside
X ⊂ V (G) which need not be examined in the component deleting process, as introduced in Theorems C and D. The result
is Theorem 1.

Theorem 1. Let G be a graph, let X be a subset of V (G) and let F be a complete-factor of G − X with c(F) ≥ 2. If f : V (G) →

Z+
∪ {0} satisfies f (V (G)) ≡ 0 (mod 2) and G − V (C) has an f -factor for each component C of F , then G has an f -factor in the

following cases:
(i) degG(X) ≤ c(F) − 1;
(ii) c(F) is even and degG(X) ≤ c(F) + 1;
(iii) G has no isolated vertices and degG(X) ≤ c(F) + |X | − 2; or
(iv) G has no isolated vertices, c(F) is even, and degG(X) ≤ c(F) + |X | − 1.

We note that when X = ∅, our theorem is equivalent to Theorem A. When F ∼= (|V (G)| − |X |)K1, comparing Theorem 1
with Theorems C and D, we find that the bounds in Theorems C and D are weaker. However, our main theorem is not
restricted to the case that F has no edges. As such, Theorem 1 can be successfully applied in cases where the hypotheses of
Theorems C and D fail to be satisfied.

The following example shows an instance where our main theorem allows us to conclude that G has an f -factor while
Theorems C and D cannot be used to determine that G has an f -factor. Let us consider six complete graphs Hi with
1 ≤ i ≤ 6. Assume H1 ∼= K1 with V (H1) = {v11},Hj ∼= K2 with V (Hj) = {vj1, vj2} and 2 ≤ j ≤ 4, and Hk ∼= K3 with
V (Hk) = {vk1, vk2, vk3} and 5 ≤ k ≤ 6. Let G be the graph defined by

V (G) =


1≤i≤6

V (Hi),

E(G) =


1≤i≤6

E(Hi)


5≤k≤6

{v11vk1, v11vk2, vk3v31, vk3v41}


{v21v32, v21v42, v22v32, v22v42, v32v42}.

This graph is shown in Fig. 1. First, we use our Theorem 1 to show that G has an f -factor. Suppose X = V (H1). Let F be a
complete-factor of G − X such that Hi is a component of F with 2 ≤ i ≤ 6. Now degG(X) = 4 = c(F) − 1 = c(F) + |X | − 2.
Define f : V (G) → Z+

∪ {0} by f (x) = 2 for every vertex x ∈ V (G). Clearly, f (V (G)) is even. Now we can easily check
that G − V (Hi) has an f -factor, 2 ≤ i ≤ 6. Thus G has an f -factor by our main theorem. Next, we show that we cannot
determine whether G has an f -factor by Theorem C or D. Since both Theorems C and D require that G − v has an f -factor
for each v ∈ V (G) − X , we must have v ∈ X for each v ∈ V (G) with G − v having no f -factor. It is easily checked that none
of G − v11,G − v32,G − v42,G − v53,G − v63 has an f -factor. So we can assume that X ′

= {v11, v32, v42, v53, v63} ⊆ X
in Theorems C and D. Thus degG(X) ≥ degG(X ′) = 20 > 2|V (G) − X ′

| − 1 = 15 ≥ 2|V (G) − X | − 1 and
2|V (G) − X ′

| + |X ′
| − 3 = 18 ≥ 2|V (G) − X | + |X | − 3. Thus we cannot apply either Theorem C or D.

It should be noted that Theorem A cannot be used to determine that the graph G in this example has an f -factor. To see
this we consider a complete-factor F of G. Since G − v11 has no f -factor, if Theorem A is to be applied we must have the
component C of F containing v11 non-trivial. Without loss of generality, C must also contain v51. However, G − {v11, v51}

has no f -factor, so V (C) = {v11, v51, v52}. Since G − V (C) does have an f -factor, consider the component D of F − V (C)
containing v53. Although G − V (C) has an f -factor, we show that G − V (D) has no f -factor. Since G − v53 has no f -factor, D
is not K1. If V (D) = {v53, v31}, then G − V (D) has no f -factor. Thus, we may assume V (D) = {v53, v41}. In this case also, it is
easy to see that G − V (D) has no f -factor.

Thus Theorem 1 provides a genuine extension of Theorem A and the possibility of guaranteeing the existence of f -factors
in some cases where Theorems C and D fail.
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