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a b s t r a c t

The first result states that every 4-connected graph G with minimum degree δ and
connectivity κ either contains a cycle of length at least 4δ− κ − 4 or every longest cycle in
G is a dominating cycle. The second result states that any such graph under the additional
condition δ ≥ α either contains a cycle of length at least 4δ − κ − 4 or is hamiltonian,
where α denotes the independence number of G. Both results are sharp in all respects.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Only finite undirected graphs without loops or multiple edges are considered. We reserve n, δ, κ and α for denoting the
number of vertices (order), minimum degree, connectivity and independence number of a graph. A good reference for any
undefined terms is [1]. A graph G is Hamiltonian if G contains a Hamilton cycle, i.e. a simple cycle of length n. A cycle C in
G is a dominating cycle if every edge of G has a vertex in common with C . Further, a cycle C is said to be a D3-cycle if every
path of length at least 2 (having at least two edges) has a vertex in common with C .

In 1971, Nash-Williams [3] proved the first fundamental result concerning dominating cycles.

Theorem A ([3]). Let G be a 2-connected graph and C a longest cycle in G. If δ ≥ (n+ 2)/3 then C is a dominating cycle.

The reverse version of this theorem was established by Voss and Zuluaga [6].

Theorem B ([6]). Let G be a 3-connected graph and C a longest cycle in G. Then either |C | ≥ 3δ − 3 or C is a dominating cycle.

Nash-Williams [3] observed that the conclusion in TheoremA can be essentially improved under the additional condition
δ ≥ α.

Theorem C ([3]). Every 2-connected graph with δ ≥ max{(n+ 2)/3, α} has a Hamilton cycle.

The reverse version of Theorem C easily follows from Theorem B.

Theorem D ([6]). Let G be a 3-connected graph and C a longest cycle in G. If δ ≥ α then either |C | ≥ 3δ− 3 or C is a Hamilton
cycle.

The bounds in Theorems A and B can be essentially improved also without any essential limitations, namely by
incorporating connectivity κ into these bounds.
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Theorem E ([5]). Let G be a 3-connected graph and C a longest cycle in G. If δ ≥ (n+ 2κ)/4 then C is a dominating cycle.

Theorem F ([4]). Let G be a 4-connected graph and C a longest cycle in G. Then either |C | ≥ 4δ − 2κ or G has a dominating
cycle.

Theorems E and F are sharp only for κ = 3 and κ = 4, respectively.
Recently, Yamashita (see [7], Corollary 8) lowered theminimum degree bound in Theorem E up to (n+κ+3)/4without

any additional limitations, providing a best possible result in all respects.

Theorem G ([7]). Let G be a 3-connected graph and C a longest cycle in G. If δ ≥ (n+ κ + 3)/4 then C is a dominating cycle.

In this paper we prove, in fact, the reverse version of Theorem G.

Theorem 1. Let G be a 4-connected graph and C a longest cycle in G. Then either |C | ≥ 4δ − κ − 4 or C is a dominating cycle.

To show that Theorem 1 is best possible in all respects, we need some examples of special graphs. Let a, b, t, k be integers
with k ≤ t and let H(a, b, t, k) denote the graph obtained from tKa + K t by taking any k vertices in subgraph K t and joining
each of them to all vertices of Kb.

The graph 4Kδ−2 + K3 shows that the connectivity condition κ ≥ 4 in Theorem 1 cannot be relaxed by replacing it with
κ ≥ 3 when δ ≥ 5. The graph H(2, δ − κ + 1, δ − 1, κ) shows that for each κ ≥ 4, the conclusion |C | ≥ 4δ − κ − 4 cannot
be strengthened by replacing it with |C | ≥ 4δ − κ − 3. Finally, the graph H(1, 2, κ + 1, κ) shows that the conclusion ‘‘is a
dominating cycle’’ cannot be strengthened by replacing it with ‘‘is a Hamilton cycle’’. So, Theorem 1 is sharp in all respects.

The following theorem can be derived from Theorem G easily.

Theorem H ([7]). Every 3-connected graph with δ ≥ max{(n+ κ + 3)/4, α} has a Hamilton cycle.

Similarly, the next theorem follows from Theorem 1.

Theorem 2. Let G be a 4-connected graph and C a longest cycle in G. If δ ≥ α then either |C | ≥ 4δ − κ − 4 or C is a Hamilton
cycle.

The graphs 4Kδ−2 + K3(δ ≥ 5),H(1, 2, κ + 1, κ) and H(2, n− 3δ + 3, δ − 1, κ) show that the bounds in Theorem 2 are
best possible.

In order to prove Theorem 1, we need the following result due to Jung [2] concerning D3-cycles.

Theorem I ([2]). Let G be a 4-connected graph and C a longest cycle in G. Then either |C | ≥ 4δ − 8 or C is a D3-cycle.

2. Notation and preliminaries

The set of vertices of a graph G is denoted by V (G) and the set of edges by E(G). For S a subset of V (G), we denote by
G \ S the maximum subgraph of G with vertex set V (G) \ S. For a subgraph H of G we use G \ H as short for G \ V (H).
The neighborhood of a vertex x ∈ V (G) will be denoted by N(x). Set d(x) = |N(x)|. For X ⊆ V (G), we use N(X) to denote
∪x∈X N(x) \ X . Furthermore, for a subgraph H of G and X ⊆ V (G), we define NH(X) = N(X) ∩ V (H).

Paths and cycles in a graph G are considered as subgraphs of G. If Q is a path or a cycle, then the length of Q , denoted by
|Q |, is |E(Q )|. Wewrite a cycle C with a given orientation as

−→
C . For x, y ∈ V (C), we denote by x

−→
C y, or sometimes by C[x, y],

the subpath of C in the chosen direction from x to y. For x ∈ V (C), we denote the h-th successor and the h-th predecessor
of x on

−→
C by x+h and x−h, respectively. We abbreviate x+1 and x−1 as x+ and x−, respectively. For C[x+, y+] we also write

C(x, y). For each X ⊂ V (C), we define X+h = {x+h|x ∈ X} and X−h = {x−h|x ∈ X}.
Let G be an arbitrary graph, C a longest cycle in G and B a connected component of G \ C with V (B) = {x1, x2}. Put

R = NC (x1) ∪ NC (x2), M = NC (x1) ∩ NC (x2), Y = R ∪ R+ ∪M+2,
A = R \M, A1 = NC (x1) \M, A2 = NC (x2) \M.

The following statement follows immediately.

Claim 1. Let G be a graph, C a longest cycle in G and B a connected component of G \ C with V (B) = {x1, x2}. Then d(xi) =
|Ai| + |M| + 1 (i = 1, 2).

Since C is a longest cycle, the next four statements can be derived by standard arguments.

Claim 2. Let G be a graph, C a longest cycle in G and B a connected component of G \ C with V (B) = {x1, x2}. Then
(1) R ∩ R+ ∩M+2 = ∅,
(2) N(y) ∩ (R+ ∪M+2 \ {y+}) = ∅ for each y ∈ R+,
(3) N(y) ∩ (R+ \ {y−}) = ∅ for each y ∈ M+2,
(4) N(z) ∩ (R+ ∪M+2 \ {y}) = ∅ for each z ∈ N(y) \ V (C) and y ∈ M+2.
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