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1. Introduction

Only finite undirected graphs without loops or multiple edges are considered. We reserve n, §, k and « for denoting the
number of vertices (order), minimum degree, connectivity and independence number of a graph. A good reference for any
undefined terms is [1]. A graph G is Hamiltonian if G contains a Hamilton cycle, i.e. a simple cycle of length n. A cycle C in
G is a dominating cycle if every edge of G has a vertex in common with C. Further, a cycle C is said to be a D3-cycle if every
path of length at least 2 (having at least two edges) has a vertex in common with C.

In 1971, Nash-Williams [3] proved the first fundamental result concerning dominating cycles.

Theorem A ([3]). Let G be a 2-connected graph and C a longest cycle in G. If § > (n + 2)/3 then C is a dominating cycle.

The reverse version of this theorem was established by Voss and Zuluaga [6].

Theorem B ([6]). Let G be a 3-connected graph and C a longest cycle in G. Then either |C| > 35 — 3 or C is a dominating cycle.
Nash-Williams [3] observed that the conclusion in Theorem A can be essentially improved under the additional condition
s> a.
Theorem C ([3]). Every 2-connected graph with 6 > max{(n + 2)/3, «} has a Hamilton cycle.
The reverse version of Theorem C easily follows from Theorem B.
Theorem D ([6]). Let G be a 3-connected graph and C a longest cycle in G. If § > « then either |C| > 35 — 3 or C is a Hamilton
cycle.

The bounds in Theorems A and B can be essentially improved also without any essential limitations, namely by
incorporating connectivity « into these bounds.
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Theorem E ([5]). Let G be a 3-connected graph and C a longest cycle in G. If § > (n + 2«) /4 then C is a dominating cycle.

Theorem F ([4]). Let G be a 4-connected graph and C a longest cycle in G. Then either |C| > 45 — 2k or G has a dominating
cycle.

Theorems E and F are sharp only for « = 3 and x = 4, respectively.
Recently, Yamashita (see [7], Corollary 8) lowered the minimum degree bound in Theorem E up to (n+ « + 3)/4 without
any additional limitations, providing a best possible result in all respects.

Theorem G ([7]). Let G be a 3-connected graph and C a longest cycle in G. If § > (n + « + 3)/4 then C is a dominating cycle.

In this paper we prove, in fact, the reverse version of Theorem G.

Theorem 1. Let G be a 4-connected graph and C a longest cycle in G. Then either |C| > 45 — x — 4 or C is a dominating cycle.

To show that Theorem 1 is best possible in all respects, we need some examples of special graphs. Let a, b, t, k be integers
with k < t and let H(a, b, t, k) denote the graph obtained from tK, + K, by taking any k vertices in subgraph K; and joining
each of them to all vertices of Kj,.

The graph 4K;s_, + K3 shows that the connectivity condition x > 4 in Theorem 1 cannot be relaxed by replacing it with
k > 3whené > 5.The graph H(2,5 — k + 1,8 — 1, k) shows that for each « > 4, the conclusion |C| > 4§ — x — 4 cannot
be strengthened by replacing it with |C| > 4§ — ¥ — 3. Finally, the graph H(1, 2, ¥ + 1, x) shows that the conclusion “is a
dominating cycle” cannot be strengthened by replacing it with “is a Hamilton cycle”. So, Theorem 1 is sharp in all respects.

The following theorem can be derived from Theorem G easily.

Theorem H ([7]). Every 3-connected graph with § > max{(n + « + 3)/4, «} has a Hamilton cycle.

Similarly, the next theorem follows from Theorem 1.

Theorem 2. Let G be a 4-connected graph and C a longest cycle in G. If § > « then either |C| > 45§ — k — 4 or C is a Hamilton
cycle.

The graphs 4Ks_, + K3(8 > 5), H(1,2,x + 1,x) and H(2,n — 3§ + 3, § — 1, k) show that the bounds in Theorem 2 are
best possible.

In order to prove Theorem 1, we need the following result due to Jung [2] concerning Ds-cycles.

Theorem I ([2]). Let G be a 4-connected graph and C a longest cycle in G. Then either |C| > 46 — 8 or C is a D3-cycle.

2. Notation and preliminaries

The set of vertices of a graph G is denoted by V(G) and the set of edges by E(G). For S a subset of V(G), we denote by
G \ S the maximum subgraph of G with vertex set V(G) \ S. For a subgraph H of G we use G \ H as short for G \ V(H).
The neighborhood of a vertex x € V(G) will be denoted by N(x). Set d(x) = |N(x)|. For X C V(G), we use N(X) to denote
Uxex N (%) \ X. Furthermore, for a subgraph H of G and X C V(G), we define Ny (X) = N(X) N V(H).

Paths and cycles in a graph G are considered as subgraphs of G. If Q is a path or a cycle, then the length of Q, denoted by
|Q|,is |[E(Q)|. We write a cycle C with a given orientation as E) Forx,y € V(C), we denote by xf}y, or sometimes by C[x, y],
the subpath of C in the chosen direction from x to y. For x € V(C), we denote the h-th successor and the h-th predecessor
ofxon C by xt" and x~", respectively. We abbreviate x*! and x~! as x* and x~, respectively. For C[x*, y*] we also write
C(x, y). For each X C V(C), we define X*" = (x™'|x € X} and X" = {x "|x € X}.

Let G be an arbitrary graph, C a longest cycle in G and B a connected component of G \ C with V(B) = {xy, x»}. Put

R = Nc(x1) U Nc(x2), M = N¢(x1) N Nc(x2), Y =RURT UM,
A=R\M, A; = Nc(x1) \ M, Ay = Nc(x2) \ M.
The following statement follows immediately.

Claim 1. Let G be a graph, C a longest cycle in G and B a connected component of G \ C with V(B) = {x1, x2}. Then d(x;) =
[Ail + M|+ 1(G{=1,2).

Since C is a longest cycle, the next four statements can be derived by standard arguments.

Claim 2. Let G be a graph, C a longest cycle in G and B a connected component of G\ C with V(B) = {x1, x2}. Then

(1) RNRt N M2 =y,

(2) N9) N (RT UM™2\ {y*}) = 0 foreachy € RY,

B) N9)NRT\ {y"}) =0 foreachy € M*?,

(4) N)N(RT UM™Y\ {y}) =@ foreachz € N(y) \ V(C) andy € M2,
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