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a b s t r a c t

RNA secondary structures can be computed as optimal solutions of certain circular
matching problems. An accurate treatment of this energy minimization problem has
to account for the small — but non-negligible — entropic destabilization of secondary
structures with non-trivial automorphisms. Such intrinsic symmetries are typically
excluded from algorithmic approaches; however, because the effects are small, they play
a role only for RNAs with symmetries at sequence level, and they appear only in particular
settings that are less frequently used in practical application, such as circular folding or
the co-folding of two or more identical RNAs. Here, we show that the RNA folding problem
with symmetry terms can still be solvedwith polynomial-time algorithms. Empirically, the
fraction of symmetric ground state structures decreaseswith chain length, so that the error
introduced by neglecting the symmetry terms affects fewer and fewer predictions.We then
explore the combinatorics of symmetric secondary structures in detail. Surprisingly, the
singularities of the generating function coincide between symmetric and non-symmetric
structures. Furthermore, generating functions and explicit asymptotic results for both the
circular and the co-folding version are derived.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let G(V , E) be a simple finite graph. A matching M is a subset of E such that no two edges e′, e′′
∈ M are incident

to the same vertex. Suppose there is a fixed natural order of the vertex set so that we can label them with integers
1 . . . n = |V |. We say that two edges e1 = {v′

1, v
′′

1 } and e2 = {v′

2, v
′′

2 } cross if the corresponding intervals overlap,
i.e., [v′

1, v
′′

1 ] ∩ [v′

2, v
′′

2 ] ∉ {∅, [v′

1, v
′′

1 ], [v
′

2, v
′′

2 ]}. A matching is circular if it does not contain a pair of crossing edges.
Circularmatchingsmodel the (pseudo-knot free) secondary structures of nucleic acids, i.e., RNA andDNA, in a naturalway

[18,22]. Here, the nucleotide sequence (x1, xn, . . . , xn), with xi ∈ {A,U,G, C} for RNA and xi ∈ {A, T ,G, C} for DNA provides
a vertex labeling. Edges are restricted to pairs of vertices that satisfy the chemical pairing rules of nucleic acids: {u, v} ∈ E
if and only if {xu, xv} ∈ B. The set of allowed pairs are BRNA = {{A,U}, {G, C}, {G,U}} and BDNA = {{A, T }, {G, C}},
respectively.
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This circularmatching problem is solved by a simple recursion that is based on the observation, that everymatching edge
(base pair) divides the graph into two disjoint subgraphs with independent solutions:

(1)

Hence, the maximum number F of edges in a circular matching satisfies the recursion

Fij = max


Fi+1,j, max

k≥i+m+1
{i,k}∈E(G)

(Fi+1,k−1 + Fk+1,j + 1)


(2)

starting from the initializations Fi,j = 0 for j− i < m [18,22]. The parametermmeasures the minimum number of sequence
position that are located ‘‘inside’’ a base pair. Based on biophysical considerations, one usually sets m = 3 in the context of
RNA. Eq. (2) immediately translates into a recursion for the number of all possible secondary structures (i.e, assuming that
G = Kn, i.e. a complete graph):

s(n) = s(n − 1)+

n−2−
k=m

s(k)s(n − k − 2) (3)

with s(n) = 0 for n < 0 and s(n) = 1 for 0 ≤ n ≤ m + 1. For m = 0, s(n) coincides with the Catalan numbers [3].
Combinatorial problems motivated by RNA folding problems have received considerable attention over the past three
decades, see e.g. [12,20,19,10,17,5,13,4]. We shall return to the combinatorial aspects in Section 3.

In contrast to the usual setting ofmatchings theweight (energy) associatedwith a particularmatchingM , i.e., a particular
secondary structure, is not just the sumof its edges in the context of nucleic acid structures. Instead, the energy of a secondary
structure is defined in terms of so-called ‘‘loops’’. Laying out V on a cycle in the given order and connecting consecutive
vertices by additional ‘‘backbone’’ edges yields an outerplanar graph. The internal faces of this embedding are called ‘‘loops’’
in the RNA folding literature. Each face is assigned an energy contribution that depends on the number of vertices, the
nucleotides (vertex labels), and the base pairs (i.e., matching edges).

Secondary structures are coarse-grained representations of the molecular structures that can be interpreted as
equivalence classes of the actual spatial conformations of the molecule. The energy of the secondary structure therefore
contains an entropic contribution which corresponds, according to Boltzmann’s famous formula S = R lnΩ , to the
diversity Ω of atomic-resolution states that are subsumed in a given secondary structure. The corresponding entropic
contributions to the energy model are obtained experimentally from the melting properties of small RNA molecules [15].
Thesemeasurements are performed on homogeneous samples of linear RNAmolecules. Since RNA sequences have a defined
reading direction (from their 5’ to their 3’ ends), these molecules have no (non-trivial) symmetries.

Interactions ofmultiple RNAmolecules aswell as the structure formation of circular RNAmolecules can be treatedwithin
the same model. Structures formed by two or more distinct RNA strands A, B, etc., can be dealt with by concatenating the
sequences A$B$ . . . Z$, where the sentinel character $ is used to mark the concatenation points. For more than two strands
all concatenation orders have to be considered. Formally, this leads to the same problem as folding a circular RNA sequence.
The only difference is that loops that contain the $-characters are assigned special energy contributions. In contrast to
linear nucleic acids, these cyclic arrangements can have non-trivial symmetries: In fact, circular sequences have a rotational
symmetry Ck if they consist of k concatenated identical copies of the same string A. Therefore, they can also form secondary
structures with non-trivial symmetry. Symmetries reduce the number of physically distinct conformations that belong to a
given secondary structure ψ . This reduction in the number of conformations is determined by the length ℓψ of its orbit.
Since the symmetry effect is not included in the individual energy contributions, the symmetry correction of the form

εsym(ψ) = RT ln ℓψ (4)

needs to be added to the standard energy model.
In practice, the effect is small and folding problemswith symmetric sequences are rare. The correction (4) thus is typically

neglected [9,1]. In caseswhere precise energies are required, one usually considers the full ensemble of Boltzmann-weighted
secondary structures and computes the partition function over all secondary structures. Surprisingly, the symmetry effect is
not a problem in this context since the overcounting of symmetric structures cancels exactlywith an undercounting inherent
in the algorithm; we refer to [2,6] for details.

From a theoretical point of view, on the other hand, there is no a priori relationship between the energy contributions
for different structural elements and the symmetry correction. In order to properly account for the symmetries, therefore, it
is necessary to account separately for secondary structures with different symmetries. At the same time, it appears natural
to consider the enumerative combinatorics of secondary structures with symmetries. From a practical point of view, finally,
one may ask to what extent minimum energy secondary structures of symmetric sequences are symmetric themselves, and
thus how often neglecting the symmetry correction leads to incorrect results.
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