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by B[X](x,y) = B(x,y) forany x # y € X. A subset X of V(B) is a clan of B if for any
x,y € Xand v € V(B) \ X, B(x, v) = B(y, v) and B(v, x) = B(v,y). A subset X of V(B) is a
hyperclan of Bif X is a clan of B satisfying: for every clan Y of B,if X NY # (J,then X C Y or
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Iéier}; :Z;rgtsr:ucture Y C X. With each binary structure B associate the family I7(B) of the maximal proper and
Decomposition tree nonempty hyperclans under inclusion of B. The decomposition tree of a binary structure
Lexicographic product B is constituted by the hyperclans X of B such that /7(B[X]) # @ and by the elements

of IT(B[X]). Given binary structures B and C such that rk(B) = rk(C), the lexicographic
product B|C| of C by B is defined on V(B) x V(C) as follows. For any (x,y) # (X,y) €
V(B) x V(C), BIC]((x,x), (¥,¥)) = B(x,y) if x # y and B|C|((x,X), (v, ")) = C(x,¥)
if x = y. The decomposition tree of the lexicographic product B|C | is described from the
decomposition trees of B and C.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Given a set S and a positive integer k, a binary structure is a function B : (S x S) \ {(x,x); x € S} — {1, ..., k}. The
set S is called the vertex set of B and is denoted by V (B). The integer k is called the rank of B and is denoted by rk(B). The
notion of binary structure extends the notions of graph, digraph and multigraph. For example, a graph G = (V(G), E(G)) is
identified with the binary structure B; of rank 2 defined on V(B;) = V(G) as follows. Given x # y € V(Bg), Bg(x,y) = 1
if {x,y} € E(G) and Bs(x,y) = 2 if {x,y} & E(G). Given a binary structure B, associate with each subset X of V(B) the
binary substructure B[X] of B induced by X defined by B[X](x, y) = B(x,y) for any x £ y € X. Notice that V(B[X]) = X and
rk(B[X]) = rk(B). For convenience, given X C V(B), B[V (B) \ X] is also denoted by B — X and by B — x when X = {x}. With
each binary structure B associate its dual B* defined on V(B*) = V(B) by B*(x, y) = B(y, x) for x # y € V(B*). Notice that
rk(B*) = rk(B). Given binary structures B and C such that rk(B) = rk(C), a bijection f : V(B) — V/(C) is an isomorphism
from B onto C if B(u, v) = C(f(u), f(v)) for any u # v € V(B).

Given a binary structure B, a subset X of V(B) is a clan [3] of Bif forany x,y € X and v € V(B) \ X, B(x, v) = B(y, v)
and B(v, x) = B(v,y). For instance, , V(B) and {x}, x € V(B), are clans of B called trivial clans of B. Clearly B and B* share
the same clans. A clan of a graph is usually called a module [12]. A binary structure is primitive [3] if all its clans are trivial. A
primitive graph is usually called prime [2]. Given a binary structure B, a subset X of V(B) is a hyperclan (or a prime clan [3])
of B if X is a clan of B satisfying: for every clan Y of B,if X N'Y # ¢, then X C Y or Y C X. Notice that the trivial clans of B
are hyperclans of B. With each binary structure B associate the family #¢(B) of the hyperclans of B. Then consider the family
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IT(B) of the maximal elements of #(B) \ {#, V(B)} under inclusion. A hyperclan X of B is a limit of B if IT(B[X]) = #. We
denote by £(B) the family of the limits of B. For example, notice that ¥ € .£(B) and {x} € L(B) forx € V(B).

Given a partial order O, a vertex x of O is minimal if there does not exist y € V(0) such that y <o x. A partial order O is a
tree if it is connected and if for each v € V(0), O[{v} U {u € V(0) : v <o u}] is a linear order. With each binary structure B,
associate the family

D(B) = U {X} U IT(BIX]).

XeH(B)\L(B)

The set O (B) ordered by inclusion, denoted by (£D(B), ©), is a tree classically called the decomposition tree of B[1,10,8].
As shown by the following example, the classic decomposition tree does not contain all the singletons. Let A be the usual
linear order on the set Z of the integers. We consider the extension Aof AtoZU {—o0} defined by —oco < n modulo A
for every n € Z. Then consider the graph G defined on Z U {—o00} as follows. Forany u # v € Z U {—o00}, {u, v} € E(G) if
max(u, v) is even. Foreveryn € Z,setn |= {—oo,n}U{m € Z : m < n}. We have #(G) \ £L(G) = {n |: n € Z} and
o Gn ) ={(n—1) |, {n}} foreach n € Z. Thus

DG)={nl:neZ}U{{n}:neZ}.

Therefore {—o0} & D(G). For convenience, we need all the singletons in the decomposition tree. Given a binary structure
B, set

D(B) = DB) U {{x} :x € V(B)}.

Clearly (5(3), Q) is a tree as well. In what follows, it will be taken as the decomposition tree of B. Obviously 5(3) = D(B)
when B is finite.

Given two binary structures B and C such that rk(B) = rk(C), the lexicographic product B|C| of C by B is defined on
V(B|C]) = V(B) x V(C) as follows. For any (x,y) # (x',y¥) € V(B) x V(C),

BLCJ((x. ). (.¥)) = {ﬁ((’;yy)) i

Notice that rk(B|C|) = rk(B) = rk(C). Our purpose is to describe the decomposition tree of the lexicographic product
B|C] from the decomposition trees of B and of C. This should be useful to study the binary structures’ idempotent under the
lexicographic product, that is, the infinite binary structures B such that B| B] is isomorphic to B. Sabidussi [11] introduced
a construction to obtain graphs idempotent under the lexicographic product. We describe his construction as applied for
binary structures. Consider a linear order L defined on a set V(L) and a binary structure B with |V (B)| > 2. Choose a vertex
of B and denote it by 0. Denote by V"'V (B) the family of the functions f : V(L) —> V(B) such that {g € V(L) : f(q) # 0}
is finite. The binary structure 'B is defined on VW'V (B) as follows: given f # g €® V(B), (‘B)(f, g) = B(f(s), g(s)) where s
denotes the smallest element of {q € V(L) : f(q) # g(q)} in the linear order L. Notice that rk(*B) = rk(B). For a linear order
L and a binary structure B, we obtain that (:B)|'B] is isomorphic to 2l B where 2 denotes the usual linear order on {0, 1}.
Consequently the binary structure !B is idempotent under the lexicographic product if 2| L] is isomorphic to L. For instance,
consider the usual linear order on the set of rational numbers which is denoted by Q as well. We have 2| Q] is isomorphic
to Q and hence ©B is idempotent under the lexicographic product for every binary structure B such that [V (B)| > 2. In fact,
these binary structures are the only known binary structures idempotent under the lexicographic product. We hope that
our structural study will permit a complete characterization of such binary structures. The decomposition tree of the graphs
idempotent under the lexicographic product, obtained by the above construction, is entirely described in [5].

Let B and C be two binary structures such that rk(B) = rk(C). The following two facts arise from our study. First, consider
aclan W of B|C|. Although {x € V(B) : 3x' € V(C), (x,x) € W}isaclanofB, {x' € V(C) : 3x € V(B), (x,X) € W} is not
always a clan of C. We characterize the clans W of B[ C] such that {x' € V(C) : 3x € V(B), (x,x') € W}isnotaclanof C (see
Corollary 14). Second, consider W C V(B) x V(C) such that |{x € V(B) : 3x' € V(C), (x,x") € W}| > 2. We show that W is a
hyperclan of B|C] ifand only if W = {x € V(B) : 3x' € V(C), (x,x) e W} x V(C)and {x € V(B) : 3x' € V(C), (x,x) € W}
is a hyperclan of B (see Lemma 15 and Proposition 16). On the other hand, {x} x V(C) is not always a hyperclan of B|C |
for x € V(B). The notion of a locally isolated vertex (see Section 3) allows us to analyze this situation (see Theorem 17).
The second fact induces the main difficulty in decomposing £ (B|C]) into a lexicographical sum over £ (B) (see Eq. (1) in
Section 6.2) which constitutes our principal result.

2. Connectivities and clan decomposition

2.1. Constant and linear binary structures

A binary structure B is {i}-constant, where i € {1, ..., rk(B)}, or simply constant, if B(x,y) = iforany x £ y € V(B).

Let B be a binary structure. Given X ¢ V(B),y € V(B) \ X andi € {1, ..., rk(B)}, B(y, X) = i means B(y, x) = i for each
x € X.Similarly B(X,y) = i means B(x, y) = iforeachx € X.GivenX C V(B) andy € V(B) \ X,y ~ X means that there are
i,j e {1,...,rk(B)} such that B(y, X) = iand B(X, y) = j.So a subset X of V(B) is aclan of Bify ~ X foreachy € V(B) \ X.
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