

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Decomposition tree of a lexicographic product of binary structures

P. Ille a,*, R.E. Woodrow b

- a Institut de Mathématiques de Luminy, CNRS UMR 6206, 163 avenue de Luminy, Case 907, 13288 Marseille Cedex 09, France
- b Department of Mathematics and Statistics, The University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4

ARTICLE INFO

Article history:
Received 13 June 2009
Received in revised form 26 May 2011
Accepted 29 May 2011
Available online 5 July 2011

Keywords:
Binary structure
Decomposition tree
Lexicographic product

ABSTRACT

Given a set S and a positive integer k, a binary structure is a function $B:(S\times S)\setminus\{(x,x);\ x\in S\}\longrightarrow\{1,\ldots,k\}$. The set S is denoted by V(B) and the integer k is denoted by rk(B). With each subset X of V(B) associate the binary substructure B[X] of B induced by X defined by B[X](x,y)=B(x,y) for any $x\neq y\in X$. A subset X of V(B) is a clan of B if for any $x,y\in X$ and $v\in V(B)\setminus X$, B(x,v)=B(y,v) and B(v,x)=B(v,y). A subset X of V(B) is a hyperclan of B if X is a clan of B satisfying: for every clan Y of B, if $X\cap Y\neq\emptyset$, then $X\subseteq Y$ or $Y\subseteq X$. With each binary structure B associate the family $\Pi(B)$ of the maximal proper and nonempty hyperclans under inclusion of B. The decomposition tree of a binary structure B is constituted by the hyperclans X of B such that $\Pi(B[X])\neq\emptyset$ and by the elements of $\Pi(B[X])$. Given binary structures B and C such that $\Pi(B[X])=\pi k(C)$, the lexicographic product B[C] of C by B is defined on $V(B)\times V(C)$ as follows. For any $(x,y)\neq (x',y')\in V(B)\times V(C)$, B[C]((x,x'),(y,y'))=B(x,y) if $x\neq y$ and B[C]((x,x'),(y,y'))=C(x',y') if $x\in Y$. The decomposition tree of the lexicographic product B[C] is described from the decomposition trees of B and C.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Given a set S and a positive integer k, a binary structure is a function $B:(S\times S)\setminus\{(x,x);\ x\in S\}\longrightarrow\{1,\ldots,k\}$. The set S is called the *vertex set* of B and is denoted by V(B). The integer k is called the *rank* of B and is denoted by rk(B). The notion of binary structure extends the notions of graph, digraph and multigraph. For example, a graph G=(V(G),E(G)) is identified with the binary structure B_G of rank 2 defined on $V(B_G)=V(G)$ as follows. Given $x\neq y\in V(B_G), B_G(x,y)=1$ if $\{x,y\}\in E(G)$ and $B_G(x,y)=2$ if $\{x,y\}\notin E(G)$. Given a binary structure B, associate with each subset X of V(B) the binary substructure B[X] of B induced by X defined by B[X](x,y)=B(x,y) for any $x\neq y\in X$. Notice that V(B[X])=X and rk(B[X])=rk(B). For convenience, given $X\subseteq V(B), B[V(B)\setminus X]$ is also denoted by B-X and by B-X when $X=\{x\}$. With each binary structure B associate its dual B^* defined on $V(B^*)=V(B)$ by $B^*(x,y)=B(y,x)$ for $x\neq y\in V(B^*)$. Notice that $rk(B^*)=rk(B)$. Given binary structures B and C such that rk(B)=rk(C), a bijection $f:V(B)\longrightarrow V(C)$ is an isomorphism from B onto C if B(u,v)=C(f(u),f(v)) for any $u\neq v\in V(B)$.

Given a binary structure B, a subset X of V(B) is a clan[3] of B if for any $x, y \in X$ and $v \in V(B) \setminus X$, B(x, v) = B(y, v) and B(v, x) = B(v, y). For instance, \emptyset , V(B) and $\{x\}$, $x \in V(B)$, are clans of B called trivial clans of B. Clearly B and B^* share the same clans. A clan of a graph is usually called a module[12]. A binary structure is primitive[3] if all its clans are trivial. A primitive graph is usually called prime[2]. Given a binary structure B, a subset A of A of A of A of A is a clan of A satisfying: for every clan A of A of A is a clan of A satisfying: for every clan A of A of A is a clan of A satisfying: for every clan A of A is a clan of A satisfying: for every clan A of A is a clan of A satisfying: for every clan A of A is a clan of A satisfying: for every clan A of A is a clan of A satisfying: for every clan A of A is a clan of A satisfying: for every clan A of A is a clan of A satisfying: for every clan A of A is a clan of A satisfying: for every clan A of A is a clan of A satisfying: for every clan A of A is a clan of A satisfying: for every clan A of A is a clan of A satisfying: for every clan A of A is a clan of A satisfying: for every clan A of A is a clan of A satisfying the following A is a clan of A satisfying the following A is a clan of A satisfying the following A is a clan of A satisfying the following A is a clan of A satisfying the following A is a clan of A satisfying the following A is a clan of A satisfying the following A is a clan of A satisfying the following A is a clan of A satisfying the following A satisfying the following A is a clan of A satisfying the following A satisfying the following A is a clan of A satisfying the following A satisfying the following A satisfying the following A satisfying the following A satisfying A satisfying the following A satisfying A satisfying

^{*} Corresponding author.

E-mail addresses: pierre.ille@univmed.fr (P. Ille), woodrow@ucalgary.ca (R.E. Woodrow).

 $\Pi(B)$ of the maximal elements of $\mathcal{H}(B) \setminus \{\emptyset, V(B)\}$ under inclusion. A hyperclan X of B is a *limit* of B if $\Pi(B[X]) = \emptyset$. We denote by $\mathcal{L}(B)$ the family of the limits of B. For example, notice that $\emptyset \in \mathcal{L}(B)$ and $\{x\} \in \mathcal{L}(B)$ for $x \in V(B)$.

Given a partial order O, a vertex x of O is minimal if there does not exist $y \in V(O)$ such that $y <_O x$. A partial order O is a tree if it is connected and if for each $v \in V(O)$, $O[\{v\} \cup \{u \in V(O) : v <_O u\}]$ is a linear order. With each binary structure B, associate the family

$$\mathcal{D}(B) = \bigcup_{X \in \mathcal{H}(B) \setminus \mathcal{L}(B)} \{X\} \cup \Pi(B[X]).$$

The set $\mathcal{D}(B)$ ordered by inclusion, denoted by $(\mathcal{D}(B), \subsetneq)$, is a tree classically called the *decomposition tree* of B [1,10,8]. As shown by the following example, the classic decomposition tree does not contain all the singletons. Let Λ be the usual linear order on the set \mathbb{Z} of the integers. We consider the extension $\widehat{\Lambda}$ of Λ to $\mathbb{Z} \cup \{-\infty\}$ defined by $-\infty < n$ modulo $\widehat{\Lambda}$ for every $n \in \mathbb{Z}$. Then consider the graph G defined on $\mathbb{Z} \cup \{-\infty\}$ as follows. For any $u \neq v \in \mathbb{Z} \cup \{-\infty\}$, $\{u, v\} \in E(G)$ if $\max(u, v)$ is even. For every $n \in \mathbb{Z}$, set $n \downarrow = \{-\infty, n\} \cup \{m \in \mathbb{Z} : m < n\}$. We have $\mathcal{H}(G) \setminus \mathcal{L}(G) = \{n \downarrow : n \in \mathbb{Z}\}$ and $\Pi(G[n \downarrow]) = \{(n-1) \downarrow, \{n\}\}$ for each $n \in \mathbb{Z}$. Thus

$$\mathcal{D}(G) = \{n \downarrow : n \in \mathbb{Z}\} \cup \{\{n\} : n \in \mathbb{Z}\}.$$

Therefore $\{-\infty\} \notin \mathcal{D}(G)$. For convenience, we need all the singletons in the decomposition tree. Given a binary structure B, set

$$\widetilde{\mathcal{D}}(B) = \mathcal{D}(B) \cup \{\{x\} : x \in V(B)\}.$$

Clearly $(\widetilde{\mathcal{D}}(B), \subseteq)$ is a tree as well. In what follows, it will be taken as *the* decomposition tree of *B*. Obviously $\widetilde{\mathcal{D}}(B) = \mathcal{D}(B)$ when *B* is finite.

Given two binary structures B and C such that $\mathrm{rk}(B) = \mathrm{rk}(C)$, the *lexicographic product* $B \lfloor C \rfloor$ of C by B is defined on $V(B \lfloor C \rfloor) = V(B) \times V(C)$ as follows. For any $(x, y) \neq (x', y') \in V(B) \times V(C)$,

$$B \lfloor C \rfloor ((x,x'),(y,y')) = \begin{cases} B(x,y) & \text{if } x \neq y, \\ C(x',y') & \text{if } x = y. \end{cases}$$

Notice that $\text{rk}(B \lfloor C \rfloor) = \text{rk}(B) = \text{rk}(C)$. Our purpose is to describe the decomposition tree of the lexicographic product $B \lfloor C \rfloor$ from the decomposition trees of B and of C. This should be useful to study the binary structures' idempotent under the lexicographic product, that is, the infinite binary structures B such that $B \lfloor B \rfloor$ is isomorphic to B. Sabidussi [11] introduced a construction to obtain graphs idempotent under the lexicographic product. We describe his construction as applied for binary structures. Consider a linear order L defined on a set V(L) and a binary structure B with $|V(B)| \geq 2$. Choose a vertex of B and denote it by B. Denote by $B \parallel V(B) \parallel V(B)$

Let B and C be two binary structures such that $\mathrm{rk}(B) = \mathrm{rk}(C)$. The following two facts arise from our study. First, consider a clan W of $B \lfloor C \rfloor$. Although $\{x \in V(B) : \exists x' \in V(C), (x, x') \in W\}$ is a clan of B, $\{x' \in V(C) : \exists x \in V(B), (x, x') \in W\}$ is not always a clan of C. We characterize the clans W of $B \lfloor C \rfloor$ such that $\{x' \in V(C) : \exists x \in V(B), (x, x') \in W\}$ is not a clan of C (see Corollary 14). Second, consider $W \subseteq V(B) \times V(C)$ such that $\{x \in V(B) : \exists x' \in V(C), (x, x') \in W\} \mid 2$. We show that W is a hyperclan of $B \lfloor C \rfloor$ if and only if $W = \{x \in V(B) : \exists x' \in V(C), (x, x') \in W\} \times V(C)$ and $\{x \in V(B) : \exists x' \in V(C), (x, x') \in W\}$ is a hyperclan of B (see Lemma 15 and Proposition 16). On the other hand, $\{x\} \times V(C)$ is not always a hyperclan of $B \lfloor C \rfloor$ for $x \in V(B)$. The notion of a locally isolated vertex (see Section 3) allows us to analyze this situation (see Theorem 17). The second fact induces the main difficulty in decomposing $\widehat{\mathcal{D}}(B \lfloor C \rfloor)$ into a lexicographical sum over $\widehat{\mathcal{D}}(B)$ (see Eq. (1) in Section 6.2) which constitutes our principal result.

2. Connectivities and clan decomposition

2.1. Constant and linear binary structures

A binary structure B is $\{i\}$ -constant, where $i \in \{1, \ldots, \operatorname{rk}(B)\}$, or simply constant, if B(x, y) = i for any $x \neq y \in V(B)$. Let B be a binary structure. Given $X \subsetneq V(B)$, $y \in V(B) \setminus X$ and $i \in \{1, \ldots, \operatorname{rk}(B)\}$, B(y, X) = i means B(y, x) = i for each $x \in X$. Similarly B(X, y) = i means B(x, y) = i for each $x \in X$. Given $X \subsetneq V(B)$ and $y \in V(B) \setminus X$, $y \sim X$ means that there are $i, j \in \{1, \ldots, \operatorname{rk}(B)\}$ such that B(y, X) = i and B(X, y) = j. So a subset X of V(B) is a clan of B if $Y \in X$ for each $Y \in V(B) \setminus X$.

Download English Version:

https://daneshyari.com/en/article/6423547

Download Persian Version:

https://daneshyari.com/article/6423547

Daneshyari.com