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a b s t r a c t

Given a set S and a positive integer k, a binary structure is a function B : (S×S)\{(x, x); x ∈

S} −→ {1, . . . , k}. The set S is denoted by V (B) and the integer k is denoted by rk(B). With
each subset X of V (B) associate the binary substructure B[X] of B induced by X defined
by B[X](x, y) = B(x, y) for any x ≠ y ∈ X . A subset X of V (B) is a clan of B if for any
x, y ∈ X and v ∈ V (B) \ X , B(x, v) = B(y, v) and B(v, x) = B(v, y). A subset X of V (B) is a
hyperclan of B if X is a clan of B satisfying: for every clan Y of B, if X ∩Y ≠ ∅, then X ⊆ Y or
Y ⊆ X . With each binary structure B associate the family Π(B) of the maximal proper and
nonempty hyperclans under inclusion of B. The decomposition tree of a binary structure
B is constituted by the hyperclans X of B such that Π(B[X]) ≠ ∅ and by the elements
of Π(B[X]). Given binary structures B and C such that rk(B) = rk(C), the lexicographic
product B⌊C⌋ of C by B is defined on V (B) × V (C) as follows. For any (x, y) ≠ (x′, y′) ∈

V (B) × V (C), B⌊C⌋((x, x′), (y, y′)) = B(x, y) if x ≠ y and B⌊C⌋((x, x′), (y, y′)) = C(x′, y′)
if x = y. The decomposition tree of the lexicographic product B⌊C⌋ is described from the
decomposition trees of B and C .

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Given a set S and a positive integer k, a binary structure is a function B : (S × S) \ {(x, x); x ∈ S} −→ {1, . . . , k}. The
set S is called the vertex set of B and is denoted by V (B). The integer k is called the rank of B and is denoted by rk(B). The
notion of binary structure extends the notions of graph, digraph and multigraph. For example, a graph G = (V (G), E(G)) is
identified with the binary structure BG of rank 2 defined on V (BG) = V (G) as follows. Given x ≠ y ∈ V (BG), BG(x, y) = 1
if {x, y} ∈ E(G) and BG(x, y) = 2 if {x, y} ∉ E(G). Given a binary structure B, associate with each subset X of V (B) the
binary substructure B[X] of B induced by X defined by B[X](x, y) = B(x, y) for any x ≠ y ∈ X . Notice that V (B[X]) = X and
rk(B[X]) = rk(B). For convenience, given X ( V (B), B[V (B) \ X] is also denoted by B − X and by B − x when X = {x}. With
each binary structure B associate its dual B⋆ defined on V (B⋆) = V (B) by B⋆(x, y) = B(y, x) for x ≠ y ∈ V (B⋆). Notice that
rk(B⋆) = rk(B). Given binary structures B and C such that rk(B) = rk(C), a bijection f : V (B) −→ V (C) is an isomorphism
from B onto C if B(u, v) = C(f (u), f (v)) for any u ≠ v ∈ V (B).

Given a binary structure B, a subset X of V (B) is a clan [3] of B if for any x, y ∈ X and v ∈ V (B) \ X , B(x, v) = B(y, v)
and B(v, x) = B(v, y). For instance, ∅, V (B) and {x}, x ∈ V (B), are clans of B called trivial clans of B. Clearly B and B⋆ share
the same clans. A clan of a graph is usually called amodule [12]. A binary structure is primitive [3] if all its clans are trivial. A
primitive graph is usually called prime [2]. Given a binary structure B, a subset X of V (B) is a hyperclan (or a prime clan [3])
of B if X is a clan of B satisfying: for every clan Y of B, if X ∩ Y ≠ ∅, then X ⊆ Y or Y ⊆ X . Notice that the trivial clans of B
are hyperclans of B. With each binary structure B associate the family H(B) of the hyperclans of B. Then consider the family
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Π(B) of the maximal elements of H(B) \ {∅, V (B)} under inclusion. A hyperclan X of B is a limit of B if Π(B[X]) = ∅. We
denote by L(B) the family of the limits of B. For example, notice that ∅ ∈ L(B) and {x} ∈ L(B) for x ∈ V (B).

Given a partial order O, a vertex x of O is minimal if there does not exist y ∈ V (O) such that y<O x. A partial order O is a
tree if it is connected and if for each v ∈ V (O), O[{v} ∪ {u ∈ V (O) : v <O u}] is a linear order. With each binary structure B,
associate the family

D(B) =


X∈H(B)\L(B)

{X} ∪ Π(B[X]).

The set D(B) ordered by inclusion, denoted by (D(B), (), is a tree classically called the decomposition tree of B [1,10,8].
As shown by the following example, the classic decomposition tree does not contain all the singletons. Let Λ be the usual
linear order on the set Z of the integers. We consider the extension Λ of Λ to Z ∪ {−∞} defined by −∞ < n modulo Λ
for every n ∈ Z. Then consider the graph G defined on Z ∪ {−∞} as follows. For any u ≠ v ∈ Z ∪ {−∞}, {u, v} ∈ E(G) if
max(u, v) is even. For every n ∈ Z, set n ↓= {−∞, n} ∪ {m ∈ Z : m < n}. We have H(G) \ L(G) = {n ↓: n ∈ Z} and
Π(G[n ↓]) = {(n − 1) ↓, {n}} for each n ∈ Z. Thus

D(G) = {n ↓: n ∈ Z} ∪ {{n} : n ∈ Z}.

Therefore {−∞} ∉ D(G). For convenience, we need all the singletons in the decomposition tree. Given a binary structure
B, set D(B) = D(B) ∪ {{x} : x ∈ V (B)}.

Clearly ( D(B), () is a tree as well. In what follows, it will be taken as the decomposition tree of B. Obviously D(B) = D(B)
when B is finite.

Given two binary structures B and C such that rk(B) = rk(C), the lexicographic product B⌊C⌋ of C by B is defined on
V (B⌊C⌋) = V (B) × V (C) as follows. For any (x, y) ≠ (x′, y′) ∈ V (B) × V (C),

B⌊C⌋((x, x′), (y, y′)) =


B(x, y) if x ≠ y,
C(x′, y′) if x = y.

Notice that rk(B⌊C⌋) = rk(B) = rk(C). Our purpose is to describe the decomposition tree of the lexicographic product
B⌊C⌋ from the decomposition trees of B and of C . This should be useful to study the binary structures’ idempotent under the
lexicographic product, that is, the infinite binary structures B such that B⌊B⌋ is isomorphic to B. Sabidussi [11] introduced
a construction to obtain graphs idempotent under the lexicographic product. We describe his construction as applied for
binary structures. Consider a linear order L defined on a set V (L) and a binary structure B with |V (B)| ≥ 2. Choose a vertex
of B and denote it by 0. Denote by V (L)V (B) the family of the functions f : V (L) −→ V (B) such that {q ∈ V (L) : f (q) ≠ 0}
is finite. The binary structure LB is defined on V (L)V (B) as follows: given f ≠ g ∈

V (L) V (B), (LB)(f , g) = B(f (s), g(s)) where s
denotes the smallest element of {q ∈ V (L) : f (q) ≠ g(q)} in the linear order L. Notice that rk(LB) = rk(B). For a linear order
L and a binary structure B, we obtain that (LB)⌊LB⌋ is isomorphic to 2⌊L⌋B where 2 denotes the usual linear order on {0, 1}.
Consequently the binary structure LB is idempotent under the lexicographic product if 2⌊L⌋ is isomorphic to L. For instance,
consider the usual linear order on the set of rational numbers which is denoted by Q as well. We have 2⌊Q⌋ is isomorphic
to Q and hence QB is idempotent under the lexicographic product for every binary structure B such that |V (B)| ≥ 2. In fact,
these binary structures are the only known binary structures idempotent under the lexicographic product. We hope that
our structural study will permit a complete characterization of such binary structures. The decomposition tree of the graphs
idempotent under the lexicographic product, obtained by the above construction, is entirely described in [5].

Let B and C be two binary structures such that rk(B) = rk(C). The following two facts arise from our study. First, consider
a clan W of B⌊C⌋. Although {x ∈ V (B) : ∃x′

∈ V (C), (x, x′) ∈ W } is a clan of B, {x′
∈ V (C) : ∃x ∈ V (B), (x, x′) ∈ W } is not

always a clan of C . We characterize the clansW of B⌊C⌋ such that {x′
∈ V (C) : ∃x ∈ V (B), (x, x′) ∈ W } is not a clan of C (see

Corollary 14). Second, considerW ⊆ V (B)×V (C) such that |{x ∈ V (B) : ∃x′
∈ V (C), (x, x′) ∈ W }| ≥ 2.We show thatW is a

hyperclan of B⌊C⌋ if and only ifW = {x ∈ V (B) : ∃x′
∈ V (C), (x, x′) ∈ W }×V (C) and {x ∈ V (B) : ∃x′

∈ V (C), (x, x′) ∈ W }

is a hyperclan of B (see Lemma 15 and Proposition 16). On the other hand, {x} × V (C) is not always a hyperclan of B⌊C⌋

for x ∈ V (B). The notion of a locally isolated vertex (see Section 3) allows us to analyze this situation (see Theorem 17).
The second fact induces the main difficulty in decomposing D(B⌊C⌋) into a lexicographical sum over D(B) (see Eq. (1) in
Section 6.2) which constitutes our principal result.

2. Connectivities and clan decomposition

2.1. Constant and linear binary structures

A binary structure B is {i}-constant, where i ∈ {1, . . . , rk(B)}, or simply constant, if B(x, y) = i for any x ≠ y ∈ V (B).
Let B be a binary structure. Given X ( V (B), y ∈ V (B) \ X and i ∈ {1, . . . , rk(B)}, B(y, X) = i means B(y, x) = i for each

x ∈ X . Similarly B(X, y) = imeans B(x, y) = i for each x ∈ X . Given X ( V (B) and y ∈ V (B) \ X , y ∼ X means that there are
i, j ∈ {1, . . . , rk(B)} such that B(y, X) = i and B(X, y) = j. So a subset X of V (B) is a clan of B if y ∼ X for each y ∈ V (B) \ X .
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