On rainbow matchings in bipartite graphs

Ron Aharoni ${ }^{1}$
Department of Mathematics
Technion
Haifa, Israel
Eli Berger ${ }^{2}$
Department of Mathematics
Haifa University
Haifa, Israel
Dani Kotlar ${ }^{3}$
Department of Computer Science
Tel-Hai College
Upper Galilee, Israel
Ran Ziv ${ }^{4}$
Department of Computer Science
Tel-Hai College
Upper Galilee, Israel

Abstract

We present recent results regarding rainbow matchings in bipartite graphs. Using topological methods we address a known conjecture of Stein and show that if $K_{n, n}$ is partitioned into n sets of size n, then a partial rainbow matching of size $2 n / 3$ exists. We generalize a result of Cameron and Wanless and show that for any n

matchings of size n in a bipartite graph with $2 n$ vertices there exists a full matching intersecting each matching at most twice. We show that any n matchings of size approximately $3 n / 2$ have a rainbow matching of size n. Finally, we show the uniqueness of the extreme case for a theorem of Drisko and provide a generalization of Drisko's theorem.

Keywords: partial rainbow matching, full rainbow matching, bipartite graph, Ryser-Brualdi Conjecture, Stein's conjecture

1 The case of n sets of size n

Given sets $F_{1}, F_{2}, \ldots F_{n}$ of edges in a graph, a (partial) rainbow matching is a partial choice function on the $F_{i} \mathrm{~s}$ whose range is a matching. If the rainbow matching represents all of the F_{i}, then it is a full rainbow matching.

A known conjecture of Ryser and Brualdi $[10,16,17]$ states that any n matchings $F_{1}, F_{2}, \ldots F_{n}$ of size n that form a partition of $K_{n, n}$ have a partial rainbow matching of size $n-1$. The best result so far towards proving this conjecture belongs to Hatami and Shor [14] who showed that in any such case a partial rainbow matching of size $n-11 \log _{2}^{2} n$ exists.

The Ryser-Brualdi conjecture can be generalized in different ways. We may ease the requirement that the matchings $F_{1}, F_{2}, \ldots F_{n}$ form a partition of $K_{n, n}[1]$:

Conjecture 1.1 Any n matchings of size n in a bipartite multigraph have a partial rainbow matching of size $n-1$.

The best result in this direction in due to Woolbright [18] and Brouwer, de Vries and Wieringa [9] who showed (essentially) that a rainbow matching of size $n-\lfloor\sqrt{n}\rfloor$ exists.

Given sets $F_{1}, F_{2}, \ldots F_{n}$, if a matching of size n in their multiset union intersects each F_{i} at most twice, we call it a half-rainbow matching. Cameron and Wanless [11] showed that in the Ryser-Brualdi setup (that is, when the matchings $F_{1}, F_{2}, \ldots F_{n}$ form a partition of $K_{n, n}$) a half-rainbow matching of size n exists. We generalize the Cameron-Wanless result to the case of any n matchings, namely,

[^0]
https://daneshyari.com/en/article/6423637

Download Persian Version:
https://daneshyari.com/article/6423637

Daneshyari.com

[^0]: 1 Email: raharoni@gmail.com
 2 Email: berger.haifa@gmail.com
 3 Email: dannykotlar@gmail.com
 4 Email: ranzivziv@gmail.com

