# Enumeration Problems on the Expansion of a Chord Diagram 

Tomoki Nakamigawa 1,2<br>Department of Information Science<br>Shonan Institute of Technology<br>1-1-25 Tsujido-Nishikaigan, Fujisawa, Kanagawa 251-8511, Japan


#### Abstract

A chord diagram is a set of chords of a circle such that no pair of chords has a common endvertex. A pair of chords is called a crossing if the two chords intersect. A chord diagram $E$ is called nonintersecting if $E$ contains no crossing. For a chord diagram $E$ having a crossing $S=\left\{x_{1} x_{3}, x_{2} x_{4}\right\}$, the expansion of $E$ with respect to $S$ is to replace $E$ with $E_{1}=(E \backslash S) \cup\left\{x_{2} x_{3}, x_{4} x_{1}\right\}$ or $E_{2}=(E \backslash S) \cup\left\{x_{1} x_{2}, x_{3} x_{4}\right\}$. A chord diagram $E=E_{1} \cup E_{2}$ is called complete bipartite of type ( $m, n$ ), denoted by $C_{m, n}$, if (1) both $E_{1}$ and $E_{2}$ are nonintersecting, (2) for every pair $e_{1} \in E_{1}$ and $e_{2} \in$ $E_{2}, e_{1}$ and $e_{2}$ are crossing, and (3) $\left|E_{1}\right|=m,\left|E_{2}\right|=n$. Let $f_{m, n}$ be the cardinality of the multiset of all nonintersecting chord diagrams generated from $C_{m, n}$ with a finite sequence of expansions. In this paper, it is shown $\sum_{m, n} f_{m, n}\left(x^{m} / m!\right)\left(y^{n} / n!\right)$ is $1 /(\cosh x \cosh y-(\sinh x+\sinh y))$.


Keywords: enumeration, chord diagram, expansion, alternating permutation

[^0]

Fig. 1. The expansion of a chord diagram.

## 1 Introduction

Let us consider a set of chords of a circle. A set of chords is called a chord diagram, if they have no common endvertex. If a chord diagram consists of a set of $n$ mutually crossing chords, it is called an $n$-crossing. A 2 -crossing is simply called a crossing as well. If a chord diagram contains no crossing, it is called nonintersecting.

Let $V$ be a set of $2 n$ vertices on a circle, and let $E$ be a chord diagram of order $n$, where each chord has endvertices of $V$. We denote the family of all such chord diagrams by $\mathcal{C D}(V)$. Let $x_{1}, x_{2}, x_{3}, x_{4} \in V$ be placed on a circle in clockwise order. Let $E \in \mathcal{C} \mathcal{D}(V)$. For a crossing $S=\left\{x_{1} x_{3}, x_{2} x_{4}\right\} \subset E$, let $S_{1}=\left\{x_{2} x_{3}, x_{4} x_{1}\right\}$, and $S_{2}=\left\{x_{1} x_{2}, x_{3} x_{4}\right\}$. The expansion of $E$ with respect to $S$ is defined as a replacement of $E$ with $E_{1}=(E \backslash S) \cup S_{1}$ or $E_{2}=(E \backslash S) \cup S_{2}$ (see Figure 1).

For a chord diagram $E \in \mathcal{C} \mathcal{D}(V)$ and a crossing $S \subset E$, we have two successors $E_{1}$ and $E_{2}$ of $E$. By iterating possible expansions, we have a multiset of nonintersecting chord diagrams. As is remarked in [1], the resulting multiset of nonintersecting chord diagrams generated from $E$ with a set of expansions is uniquely determined.

Let us denote the multiset of nonintersecting chord diagrams generated by $E \in \mathcal{C} \mathcal{D}(V)$ by $\mathcal{N C \mathcal { D }}(E)$. For $E \in \mathcal{C D}(V)$, let us define $f(E)$ as the cardinality of $\mathcal{N C D}(E)$ as a multiset.

Let $C_{n}$ be an $n$-crossing. In [1], the exponential generating function of

# https://daneshyari.com/en/article/6423641 

Download Persian Version:

## https://daneshyari.com/article/6423641

## Daneshyari.com


[^0]:    1 This work was supported by KAKENHI(16K05260).
    ${ }^{2}$ Email:nakami@info.shonan-it.ac.jp

