Vertex-disjoint cycles in bipartite tournaments

Diego González-Moreno ${ }^{a, 1,2}$, Camino Balbuena ${ }^{b, 3}$, Mika Olsen ${ }^{a, 4}$
${ }^{a}$ Departamento de Matemáticas Aplicadas y Sistemas
Universidad Autónoma Metropolitana
México D.F., México
${ }^{b}$ Departament de Enginyeria Civil i Ambiental
Universitat Politècnica de Catalunya
Barcelona, España

Abstract

Let $k \geq 2$ be an integer. Bermond and Thomassen [Bermond J. C., Thomassen, C., Cycles in digraphs a survey, Journal of Graph Theory 5(1) (1981) 1-43] conjectured that every digraph D with $\delta^{+}(D) \geq 2 k-1$ contains at least k vertex-disjoint cycles. In this work we prove that every bipartite tournament with minimum out-degree at least $2 k-2$ and minimum in-degree at least one contains k vertex-disjoint cycles of length four, whenever $k \geq 3$. Finally, we show that every bipartite tournament with minimum degree at least $(3 k-1) / 2$ contains k vertex-disjoint cycles of length four.

Keywords: vertex-disjoint cycles, bipartite tournament, minimum degree

[^0]
1 Introduction

Bermond and Thomassen [4], in 1981, stablished the following conjecture, which relates the number of disjoint cycles with the minimum out-degree of a digraph.

Conjecture 1.1 Every digraph with D with $\delta^{+}(D) \geq 2 k-1$ contains at least k vertex-disjoint cycles.

Thomassen [7] established the existence of a finite integer $f(k)$ such that every digraph of minimum out-degree at least $f(k)$ contains k disjoint cycles. In 1996, Alon [1] proved that $f(k) \leq 64 k$ for every positive integer k. Conjecture 1.1 has been proved, by Thomassen [7], when $k=2$, and by Lichiardopol, Pór and Sereni [6] if $k=3$. In 2010, Bessy, Lichiardopol and Sereni [3] proved it for regular tournaments. In 2014, Bang-Jensen, Bessy and Thomassé [5] proved the conjecture for tournaments. Recently, Bay, Li and Li [2] proved Conjecture 1.1 for bipartite tournaments.

By considering the girth of a digraph Bang Jensen, Bessy and Thomassen [3] proposed the following conjecture.

Conjecture 1.2 Every digraph D with girth $g \geq 2$ and $\delta^{+}(D) \geq g k /(g-1)$ contains at least k vertex-disjoint cycles.

In this work we prove that every bipartite tournament T with $\delta^{+}(T) \geq$ $2 k-2$ and $\delta^{-}(T) \geq 1$ contains at least k vertex-disjoint cycles of length four. It is also shown that every bipartite tournament T with $\delta(T) \geq(3 k-1) / 2$ contains at least k vertex-disjoint cycles of length four. As a consequence, it is proved that Conjecture 1.2 holds for bipartite tournaments with minimum in-degree at least one and $k=2,3,4$.

2 Basic definitions

Through this work only finite digraphs without loops and multiple arcs are considered. Let D be a digraph with vertex set $V(D)$ and arc set $A(D)$. The out-degree of a vertex u of a digraph D is the number of arcs exiting from u. The in-degree of u is the number of arcs entering into u. These integers are denoted by $d^{+}(u)$ or $d^{-}(u)$, respectively. We denote by $\delta^{+}(D)$ the minimum out-degree of the vertices in D, and by $\delta^{-}(D)$ the minimum in-degree of the vertices in D. The minimum degree is defined as $\delta(D)=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\}$. The girth of a digraph D is the minimum length of a cycle in D. A tournament is an orientation of a complete graph and a bipartite tournament is an oriented

https://daneshyari.com/en/article/6423646

Download Persian Version:
https://daneshyari.com/article/6423646

Daneshyari.com

[^0]: ${ }^{1}$ This research was supported by CONACyT-México, under project CB-222104
 ${ }^{2}$ Email: dgonzalez@correo.cua.uam.mx
 ${ }^{3}$ Email: m.camino.balbuena@upc.edu
 ${ }^{4}$ Email: olsen@correo.cua.uam.mx

