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Abstract

We compute the number of triangulations of a convex k-gon each of whose sides
is subdivided by r − 1 points. We find explicit formulas and generating functions,
and we determine the asymptotic behaviour of these numbers as k and/or r tend
to infinity. We connect these results with the question of finding the planar set of
n points in general position that has the minimum possible number of triangulations.
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1 Introduction

Let k and r be two natural numbers, k ≥ 3, r ≥ 1. Let SC(k, r) denote a
convex k-gon in the plane each of whose sides is subdivided by r − 1 points.
(Thus, the whole configuration consists of n := kr points.)

A triangulation of a planar point set S is a dissection of its convex hull
by non-crossing diagonals into triangles. We denote the number of triangu-
lations of SC(k, r) by tr(k, r). Triangulations of subdivided convex polygons
were studied to some extent by Hurtado and Noy [4] 7 and by Bacher and
Mouton [2]. We find enumeration formulas and precise asymptotic results for
the numbers tr(k, r). Some of our results extend those from earlier papers,
and answer questions and conjectures stated there and in the OEIS [5].

2 Formulas

The first step is developing an inclusion-exclusion formula for tr(k, r). 8

Theorem 2.1 We have

tr(k, r) =
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where Cn is the nth Catalan number, and

ak,r,m := [xm]
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Proof (Sketch) We construct a bijection between triangulations of SC(k, r)
and a subset of triangulations of the convex (kr)-gon, determined by certain
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