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Abstract

Let G be a graph on n vertices with independence number ov. What is the largest
k-connected subgraph that G must contain? We prove that if n is sufficiently large
(n > o’k + 1 will do), then G contains a k-connected subgraph on at least n/o
vertices. This is sharp, since G might be the disjoint union of a equally-sized
cliques. For £ > 3 and a = 2,3, we shall prove that the same result holds for
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n > 4(k—1) and n > % respectively, and that these lower bounds on n are
sharp.
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1 Introduction

For any terms not defined here, we refer the reader to [1]. When can we find a
large highly connected subgraph of a given graph G?7 A classical theorem due
to Mader [10] (see also [5]) states that if G has average degree at least 4k, then
G contains a k-connected subgraph H. Mader’s theorem does not give a lower
bound on the order of H. If G is dense (for instance if §(G), the minimum
degree of GG, is bounded below), it is natural to expect that G in fact contains
a large highly connected subgraph. Using a recent result of Borozan et al. [3],
we know that every graph G of order n with §(G) > \/c(k — 1)n contains
a k-connected subgraph of order at least \/(k — 1)n/c, where ¢ = 2123/180.
What if we are interested in finding a larger k-connected subgraph, say of
order ¢n? Along these lines, Bollobas and Gyérfas [2] conjectured that any
graph G of order n > 4k — 3, or its complement G, contains a k-connected
subgraph H of order at least n — 2(k — 1). Since either G or G is a dense
graph, we might expect to find a very large highly connected subgraph in one
of them. This conjecture was settled affirmatively for n > 13k — 15 by Liu,
Morris and Prince [9], and then for n > 6.5(k — 1) by Fujita and Magnant [8].

Suppose next that 6(G) = en. Can we find a k-connected subgraph of G' on
at least cn vertices? It turns out that the answer is “yes” for sufficiently large
n, and in fact a simple argument gives even more. To see this, suppose n > k
and n > 1/c, and let m = |1/c|. If G itself is not k-connected, then G can be
“split” into two pieces with a (negligible) separating set of size at most &k — 1.
Both pieces must have order at least cn, so as not to violate the minimum
degree condition. Discard one of the pieces, together with the separating set,
to obtain a new graph G'. If G’ is not k-connected, we continue the process,
which terminates after at most m — 1 steps, leaving a k-connected graph H on
at least cn vertices. Now either this graph H, or one of the (at most m — 1)
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