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Abstract

Building on recent work of Dvořák and Yepremyan, we show that every simple graph
of minimum degree 7t+ 7 contains Kt as an immersion and that every graph with
chromatic number at least 3.54t + 4 contains Kt as an immersion.
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1 Introduction

The graphs in this article are simple and finite. A fundamental question in
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graph theory is the relationship between the chromatic number of a graph G
and the presence of certain structures in G. One of the most famous specific
example of this type of question is Hadwiger’s Conjecture [4] which states that
for all positive integers t, every graph of chromatic number t contains Kt, the
clique on t vertices, as a minor.

We consider a variant of Hadwiger’s conjecture to graph immersions due
to Lescure and Meynial [5] and, independently, to Abu-Khzam and Langston
[1]. We first define graph immersions. Let G be a graph and e, f ∈ E(G). Let
x, y, and z be distinct vertices such that e has endpoints x and y and f has
endpoints x and z. To split off the edges e and f , we delete e and f and add
an edge e′ with endpoints y and z. A graph G contains H as an immersion if
a graph isomorphic to H can be obtained from a subgraph of G by repeatedly
splitting off edges.

The conjecture explicitly states the following.

Conjecture 1.1 ([1], [5]) For every positive integer t, every graph with no
Kt immersion is properly t− 1 colorable.

One can immediately show that a minimum counterexample to Conjec-
ture 1.1 has minimum degree t− 1. Thus, the conjecture provides additional
motivation for the natural question of what is the smallest mininum degree
necessary to force a clique immersion. DeVos et al. [2] showed that minimum
degree 200t suffices to force a Kt immersion in a graph, providing the first
linear (in t) bound. This was recently improved by Dvořák and Yepremyn [3].

Theorem 1.2 [3] Every graph with minimum degree at least 11t+7 contains
an immersion 3 of Kt.

We give a new result on clique immersions in dense graphs; we leave the ex-
act statement for Section 2 below. As a consequence, it is possible to improve
the analysis in [3] and obtain the following bound.

Theorem 1.3 Every graph with minimum degree at least 7t + 7 contains an
immersion of Kt.

Conjecture 1.1 can be relaxed to consider the following question.

Problem 1.4 What is the smallest function f such that for all positive t and
all graphs G with χ(G) ≥ f(t), it holds that G contains Kt as an immersion.

As observed above, a minimum counterexample to Conjecture 1.1 has min-
imum degree t − 1. Thus by Theorem 1.3, we get that chromatic number at

3 Theorem 1.2 also holds true for a more restricted tructure called strong immersion.
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