

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 54 (2016) 121–126 www.elsevier.com/locate/endm

Forcing clique immersions through chromatic number ¹

Tien-Nam Le²

Laboratoire d'Informatique du Parallélisme École Normale Supérieure de Lyon Lyon, France

Paul Wollan

Department of Computer Science University of Rome, "La Sapienza" Rome, Italy

Abstract

Building on recent work of Dvořák and Yepremyan, we show that every simple graph of minimum degree 7t + 7 contains K_t as an immersion and that every graph with chromatic number at least 3.54t + 4 contains K_t as an immersion.

Keywords: Graph immersion, Hadwiger conjecture, chromatic number.

1 Introduction

The graphs in this article are simple and finite. A fundamental question in

² Email: tien-nam.le@ens-lyon.fr

¹ This work supported by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement no. 279558.

graph theory is the relationship between the chromatic number of a graph G and the presence of certain structures in G. One of the most famous specific example of this type of question is Hadwiger's Conjecture [4] which states that for all positive integers t, every graph of chromatic number t contains K_t , the clique on t vertices, as a minor.

We consider a variant of Hadwiger's conjecture to graph immersions due to Lescure and Meynial [5] and, independently, to Abu-Khzam and Langston [1]. We first define graph immersions. Let G be a graph and $e, f \in E(G)$. Let x, y, and z be distinct vertices such that e has endpoints x and y and f has endpoints x and x. To split off the edges e and f, we delete e and f and add an edge e' with endpoints f and f and f are a graph isomorphic to f can be obtained from a subgraph of f by repeatedly splitting off edges.

The conjecture explicitly states the following.

Conjecture 1.1 ([1], [5]) For every positive integer t, every graph with no K_t immersion is properly t-1 colorable.

One can immediately show that a minimum counterexample to Conjecture 1.1 has minimum degree t-1. Thus, the conjecture provides additional motivation for the natural question of what is the smallest minimum degree necessary to force a clique immersion. DeVos et al. [2] showed that minimum degree 200t suffices to force a K_t immersion in a graph, providing the first linear (in t) bound. This was recently improved by Dvořák and Yepremyn [3].

Theorem 1.2 [3] Every graph with minimum degree at least 11t + 7 contains an immersion³ of K_t .

We give a new result on clique immersions in dense graphs; we leave the exact statement for Section 2 below. As a consequence, it is possible to improve the analysis in [3] and obtain the following bound.

Theorem 1.3 Every graph with minimum degree at least 7t + 7 contains an immersion of K_t .

Conjecture 1.1 can be relaxed to consider the following question.

Problem 1.4 What is the smallest function f such that for all positive t and all graphs G with $\chi(G) \geq f(t)$, it holds that G contains K_t as an immersion.

As observed above, a minimum counterexample to Conjecture 1.1 has minimum degree t-1. Thus by Theorem 1.3, we get that chromatic number at

 $^{^3}$ Theorem 1.2 also holds true for a more restricted tructure called *strong immersion*.

Download English Version:

https://daneshyari.com/en/article/6423666

Download Persian Version:

https://daneshyari.com/article/6423666

<u>Daneshyari.com</u>