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Abstract

The goal of our work is to analyze random cubic planar graphs according to the
uniform distribution. More precisely, let G be the class of labelled cubic planar
graphs and let gn be the number of graphs with n vertices. Then each graph in G
with n vertices has the same probability 1/gn. This model was analyzed first by
Bodirsky et al. [1], and here we revisit and extend their work. The motivation for
this revision is twofold. First, some proofs in [1] where incomplete with respect to
the singularity analysis and we aim at providing full proofs. Secondly, we obtain
new results that considerably strengthen those in [1] and shed more light on the
structure of random cubic planar graphs. We present a selection of our results on
asymptotic enumeration and on limit laws for parameters of random graphs.
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1 Results on enumeration

Theorem 1.1 The number cn of connected cubic planar graphs with n vertices

is asymptotically

cn ∼ c · n−7/2γnn!,

with c ≈ 0.030487 and γ = ρ−1 ≈ 3.132591, where ρ ≈ 0.319523 is the smallest

positive root of the equation

729x12+17496x10+148716x8+513216x6−7293760x4+279936x2+46656 = 0,

Theorem 1.2 The number gn of cubic planar graphs with n vertices is asymp-

totically

gn ∼ g · n−7/2γnn!,

where γ is as in Theorem 1.1 and g ≈ 0.030505. As a consequence, the limiting

probability p that a random cubic planar graph is connected is equal to

p =
c

g
≈ 0.999397.

The previous theorems were stated in [1, Theorem 2] in a less precise way and
with incomplete proofs regarding the singularity analysis. Our first goal is to
provide a full proof of these estimates. We remark that the actual value of p
was not computed in [1]. As we will see later, p can be computed exactly using
the so-called dissymmetry theorem for tree-like structures. We also remark
that some of the constants given in [1] are slightly incorrect.

Theorem 1.3 The number hn of cubic planar multigraphs is asymptotically

hn ∼ h · n−7/2γn
mn!,

with h ≈ 0.115965 and γm = ρ−1m ≈ 3.985537, where ρm ≈ 0.250907 is the

smallest positive root of

729x12−17496x10+148716x8−513216x6−7293760x4−279936x2+46656 = 0.

The same estimate holds for the number of connected cubic planar multigraphs,

but with h replaced by the constant h′ ≈ 0.104705. The limiting probability of

connectivity is

pm =
h′

h
≈ 0.902905.

This result is also claimed in [3] without a detailed proof, but the equation
defining ρm is incorrect, as well as the claimed value γm ≈ 3.973.
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