The maximum diameter of pure simplicial complexes and pseudo-manifolds

Francisco Criado and Francisco Santos

Departamento de Matemáticas, Estadística y Computación
Universidad de Cantabria, E-39005 Santander, Spain

Abstract

We construct d-dimensional pure simplicial complexes and pseudo-manifolds (without boundary) with n vertices whose combinatorial diameter grows as $c_{d} n^{d 1}$ for a constant c_{d} depending only on d, which is the maximum possible growth. Moreover, the constant c_{d} is optimal modulo a singly exponential factor in d. The pure simplicial complexes improve on a construction of the second author that achieved $c_{d} n^{2 d / 3}$. For pseudo-manifolds without boundary, as far as we know, no construction with diameter greater than n^{2} was previously known.

Keywords: Simplicial complex, hypergraph, pseudo-manifold, diameter, Hirsch conjecture

A pure simplicial complex of dimension $d-1$ (or a ($d-1$)-complex, for short) is any family C of d-element subsets of a set V (typically, $V=[n]:=$ $\{1, \ldots, n\})$. Elements of C are called facets of C and any subset of a facet is called a face. More precisely, a k-face is a face with $k+1$ elements. Faces of dimensions 0,1 , and $d-2$ are called, respectively, vertices, edges and ridges of C. We will always assume V to be finite and, without loss of generality, that V equals the set of vertices of C. Observe that a pure $(d-1)$-complex is the same as a uniform hypergraph of rank d. Its facets are called hyperedges in the hypergraph literature.

[^0]The adjacency graph or dual graph of a pure simplicial complex C, denoted $\mathrm{G}(C)$, is the graph having as vertices the facets of C and as edges the pairs of facets $X, Y \in C$ that differ in a single element (that is, those that share a ridge). Complexes with a connected adjacency graph are called strongly connected. The combinatorial diameter of C is the diameter, in the graph theoretic sense, of $\mathrm{G}(C)$.

We are interested in how large can the diameter of a pure simplicial complex be in terms of its dimension and number of vertices. For this we set:

$$
\begin{aligned}
H_{\mathrm{s}}(n, d):= & \text { maximum diameter of pure strongly connected } \\
& (d-1) \text {-complexes with } n \text { vertices. }
\end{aligned}
$$

It is known that this can be exponential in d :
Theorem 1 (Santos [8, Corollary 2.12]) In fixed dimension $d-1$:

$$
\Omega\left(n^{\frac{2 d}{3}}\right) \leq H_{s}(n, d) \leq \frac{1}{d-1}\binom{n}{d-1} \simeq \frac{n^{d-1}}{d!} .
$$

The upper bound is obtained by simply counting the possible number of ridges, while the lower bound comes from a construction using the join operation. Another construction showing $H_{\mathrm{s}}(n, d) \geq \Omega\left(n^{\frac{d}{4}}\right)$ is contained in [6, Thm. 4.4]. We show a simple and explicit construction giving:
Theorem 2 For every $d, n_{0} \in \mathbb{N}$, there is an $n \geq n_{0}$ such that:

$$
H_{s}(n, d) \geq \frac{n^{d-1}}{(d+2)^{d-1}}-3
$$

The proof of this and our other results can be found in [2]. Observe that this matches the upper bound in Theorem 1, modulo a factor in $\Theta\left(d^{3 / 2} e^{-d}\right)$, since $d!\simeq e^{-d} d^{d} \sqrt{2 \pi d}$.
Remark 3 Our proof of Theorem 2 uses an arithmetic construction valid only when the number n of vertices is of the form $q(d+2)$ for a sufficiently large prime power q. This is why we state it only for infinitely many values of n. However, every interval $[m, 2 m]$ contains an n of that form, because there is a power of 2 between $m /(d+2)$ and $m / 2(d+2)$). Hence, the theorem is also valid "for every sufficiently large $n \in \mathbb{N}$ ", modulo an extra factor of 2^{d-1} in the denominator.

Motivation for this question and relatives of it comes from the Hirsch

https://daneshyari.com/en/article/6423705

Download Persian Version:

https://daneshyari.com/article/6423705

Daneshyari.com

[^0]: ${ }^{1}$ Work of F. Santos is supported in part by the Spanish Ministry of Science (MICINN) through grant MTM2014-54207P and by the Einstein Foundation Berlin. The full version of this work is [2]
 ${ }^{2}$ fcriado92@gmail.com, francisco.santos@unican.es

