

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 54 (2016) 241–245 www.elsevier.com/locate/endm

Exact value of 3 color weak Rado number

M.P. Revuelta ^{1,2}

Departamento de Matemática Aplicada I Universidad de Sevilla Sevilla, Spain

L. Boza, J. M. Marín, M. I. Sanz³

Departamento de Matemática Aplicada I Universidad de Sevilla Sevilla, Spain

Abstract

For integers k, n, c with k, $n \ge 1$ and $c \ge 0$, the n color weak Rado number $WR_k(n,c)$ is defined as the least integer N, if it exists, such that for every n-coloring of the set $\{1,2,...,N\}$, there exists a monochromatic solution in that set to the equation $x_1 + x_2 + ... + x_k + c = x_{k+1}$, such that $x_i \ne x_j$ when $i \ne j$. If no such N exists, then $WR_k(n,c)$ is defined as infinite.

In this work, we consider the main issue regarding the 3 color weak Rado number for the equation $x_1 + x_2 + c = x_3$ and the exact value of the $WR_2(3, c) = 13c + 22$ is established.

Keywords:

Schur numbers, sum-free sets, weak Schur numbers, weakly sum-free sets, Rado numbers, weak Rado numbers.

1 Introduction

In terms of coloring, the Schur number $S_2(n)$ [14] is the least positive integer N such that for every n-coloring of $\{1, 2, ..., N\}$,

 $\Delta: \{1, 2, ..., N\} \longrightarrow \{1, 2, ..., n\}$, there exists a monochromatic solution to the equation $x_1 + x_2 = x_3$, such that $\Delta(x_1) = \Delta(x_2) = \Delta(x_3)$ where x_1 and x_2 need not be distinct.

In 1933, Rado [9], [10] generalized the work of Schur to arbitrary systems of linear equations. Given a system of linear equations L and a natural number n, the least integer N (if it exists) such that for every coloring of the set $\{1, 2, ..., N\}$ with n colors there is a monochromatic solution to L, which is called the n color Rado number for L. If no such integer N exists, then the n color Rado number for the system L is taken to be infinite.

Eighty-three years after the first Rado results, very little progress has been obtained for some systems of linear equations. Bur and Loo [2] were able to determine the 2 color Rado number for the equations $x_1 + x_2 + c = x_3$ and $x_1 + x_2 = kx_3$ for every integer c and for every positive integer k [3].

In 1993, Schaal [12] determined the 2 color Rado number $R_k(2,c)$ for the equation $x_1 + x_2 + \ldots + x_k + c = x_{k+1}$. He also obtained [13] the 3 color Rado number $R_2(3,c)$. There are several results due to Schaal and other authors concerning 2 color and 3 color Rado numbers for particular equations, see [7], [8], [11] and other authors [6]. In addition, recently we have studied when $R_k(n,c)$ is finite or infinite and we have obtained new exacts values [1]. In this work, we consider a generalization of the Rado numbers. For every integer $c \geq 0$, $n \geq 1$, let $WR_2(n,c)$ be the least integer N (if it exists) such that, for every coloring of the set $\{1,2,...,N\}$ with n colors, there exists a monochromatic solution to the equation $x_1 + x_2 + c = x_3$, where $x_1 \neq x_2$. The numbers $WR_2(n,c)$ are called weak Rado numbers.

 $WR_2(n,c)$ can be defined equivalently as the greatest N, such that the set $\{1,2,...,N-1\}$ can be partitioned into n sets $\{A_1,A_2,...,A_n\}$, such that for any $x_1,x_2 \in A_i$ then $x_1+x_2+c \notin A_i$, $\forall i$ where $x_1 \neq x_2$. The sets $\{A_1,A_2,...,A_n\}$ are weakly sum free for the equation $x_1+x_2+c=x_3$.

In 1952, Walker [15] claimed the value $WR_2(5,0) = 196$, without proof. Sixty years later, we have shown $WR_2(5,0) \ge 196$ [4] and Schaal et al.[5] have obtained the number $WR_2(2,c)$ for every integer c.

¹ Thanks to Departamento de Matemática Aplicada I Universidad de Sevilla

² Email: pastora@us.es

³ Email: boza@us.es, jmarin@us.es, isanz@us.es

Download English Version:

https://daneshyari.com/en/article/6423717

Download Persian Version:

https://daneshyari.com/article/6423717

Daneshyari.com