Chromatic index, treewidth and maximum degree

Henning Bruhn, Laura Gellert ${ }^{1,2}$
Institut für Optimierung und Operations Research
Universität Ulm
Ulm, Germany
Richard Lang ${ }^{3}$
Departamento de Ingeniería Matemática
Universidad de Chile
Santiago, Chile

Abstract

We conjecture that any graph G with treewidth k and maximum degree $\Delta(G) \geq$ $k+\sqrt{k}$ satisfies $\chi^{\prime}(G)=\Delta(G)$. In support of the conjecture we prove its fractional version.

Keywords: edge-colouring, fractional colouring, treewidth

[^0]
1 Introduction

The least number $\chi^{\prime}(G)$ of colours necessary to properly colour the edges of a (simple) graph G is either the maximum degree $\Delta(G)$ or $\Delta(G)+1$. But to decide whether $\Delta(G)$ or $\Delta(G)+1$ colours are needed is a difficult algorithmic problem [6].

Often, graphs with a relatively simple structure can be edge-coloured with only $\Delta(G)$ colours. This is the case for bipartite graphs (König's theorem) and for cubic Hamiltonian graphs. Arguably, one measure of simplicity is treewidth, how closely a graph resembles a tree.

Zhou et al. [14] observed a consequence of Vizing's adjacency lemma: any graph with treewidth k and maximum degree at least $2 k$ has chromatix index $\chi^{\prime}(G)=\Delta(G)$. Is this tight? No, it turns out. Using two recent adjacency lemmas ([9,13]), we obtain:

Proposition 1.1 For any graph G of treewidth $k \geq 4$ and maximum degree $\Delta(G) \geq 2 k-1$ it holds that $\chi^{\prime}(G)=\Delta(G)$.

This immediately suggests the question: how much further can the maximum degree be lowered? We conjecture:
Conjecture 1.2 Any graph of treewidth k and maximum degree $\Delta \geq k+\sqrt{k}$ has chromatic index Δ.

The bound is close to best possible: we construct graphs with treewidth k, maximum degree $\Delta=k+\lfloor\sqrt{k}\rfloor<k+\sqrt{k}$, and chromatic index $\Delta+1$ (for infinitely many k). For other values of k the conjecture (if true) might be off by 1 from the best bound on Δ. This is, for instance, the case for $k=2$, where the conjecture is known to hold. Indeed, Juvan et al. [8] show that series-parallel graphs with maximum degree $\Delta \geq 3$ are even Δ-edge-choosable.

In support of the conjecture we prove its fractional version: ${ }^{4}$
Theorem 1.3 Any simple graph of treewidth k and maximum degree $\Delta \geq$ $k+\sqrt{k}$ has fractional chromatic index Δ.
$\overline{4}$ The fractional chromatic index of a graph G is defined as

$$
\chi_{f}^{\prime}(G)=\min \left\{\sum_{M \in \mathcal{M}} \lambda_{M}: \lambda_{M} \in \mathbb{R}_{+}, \sum_{M \in \mathcal{M}} \lambda_{M} \mathbf{1}_{M}(e)=1 \quad \forall e \in E(G)\right\}
$$

where \mathcal{M} denotes the collection of all matchings in G and $\mathbf{1}_{M}$ the characteristic vector of M. For more details on the fractional chromatic index, see for instance Scheinerman and Ullman [10].

https://daneshyari.com/en/article/6423724

Download Persian Version:
https://daneshyari.com/article/6423724

Daneshyari.com

[^0]: ${ }^{1}$ Email: henning.bruhn@uni-ulm.de
 ${ }^{2}$ Email: laura.gellert@uni-ulm.de
 ${ }^{3}$ Email: rlang@dim.uchile.cl

