

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 54 (2016) 259–264 www.elsevier.com/locate/endm

Chromatic index, treewidth and maximum degree

Henning Bruhn, Laura Gellert^{1,2}

Institut für Optimierung und Operations Research Universität Ulm Ulm, Germany

Richard Lang³

Departamento de Ingeniería Matemática Universidad de Chile Santiago, Chile

Abstract

We conjecture that any graph G with treewidth k and maximum degree $\Delta(G) \ge k + \sqrt{k}$ satisfies $\chi'(G) = \Delta(G)$. In support of the conjecture we prove its fractional version.

Keywords: edge-colouring, fractional colouring, treewidth

http://dx.doi.org/10.1016/j.endm.2016.09.045 1571-0653/© 2016 Elsevier B.V. All rights reserved.

¹ Email: henning.bruhn@uni-ulm.de

² Email: laura.gellert@uni-ulm.de

³ Email: rlang@dim.uchile.cl

1 Introduction

The least number $\chi'(G)$ of colours necessary to properly colour the edges of a (simple) graph G is either the maximum degree $\Delta(G)$ or $\Delta(G) + 1$. But to decide whether $\Delta(G)$ or $\Delta(G) + 1$ colours are needed is a difficult algorithmic problem [6].

Often, graphs with a relatively simple structure can be edge-coloured with only $\Delta(G)$ colours. This is the case for bipartite graphs (König's theorem) and for cubic Hamiltonian graphs. Arguably, one measure of simplicity is *treewidth*, how closely a graph resembles a tree.

Zhou et al. [14] observed a consequence of Vizing's adjacency lemma: any graph with treewidth k and maximum degree at least 2k has chromatix index $\chi'(G) = \Delta(G)$. Is this tight? No, it turns out. Using two recent adjacency lemmas ([9,13]), we obtain:

Proposition 1.1 For any graph G of treewidth $k \ge 4$ and maximum degree $\Delta(G) \ge 2k - 1$ it holds that $\chi'(G) = \Delta(G)$.

This immediately suggests the question: how much further can the maximum degree be lowered? We conjecture:

Conjecture 1.2 Any graph of treewidth k and maximum degree $\Delta \ge k + \sqrt{k}$ has chromatic index Δ .

The bound is close to best possible: we construct graphs with treewidth k, maximum degree $\Delta = k + \lfloor \sqrt{k} \rfloor < k + \sqrt{k}$, and chromatic index $\Delta + 1$ (for infinitely many k). For other values of k the conjecture (if true) might be off by 1 from the best bound on Δ . This is, for instance, the case for k = 2, where the conjecture is known to hold. Indeed, Juvan et al. [8] show that series-parallel graphs with maximum degree $\Delta \geq 3$ are even Δ -edge-choosable.

In support of the conjecture we prove its fractional version:⁴

Theorem 1.3 Any simple graph of treewidth k and maximum degree $\Delta \geq k + \sqrt{k}$ has fractional chromatic index Δ .

⁴ The fractional chromatic index of a graph G is defined as

$$\chi'_f(G) = \min\left\{\sum_{M \in \mathcal{M}} \lambda_M : \lambda_M \in \mathbb{R}_+, \sum_{M \in \mathcal{M}} \lambda_M \mathbf{1}_M(e) = 1 \quad \forall e \in E(G)\right\},\$$

where \mathcal{M} denotes the collection of all matchings in G and $\mathbf{1}_M$ the characteristic vector of M. For more details on the fractional chromatic index, see for instance Scheinerman and Ullman [10].

Download English Version:

https://daneshyari.com/en/article/6423724

Download Persian Version:

https://daneshyari.com/article/6423724

Daneshyari.com