

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 54 (2016) 265–269 www.elsevier.com/locate/endm

Relation between number of kernels (and generalizations) of a digraph and its partial line digraphs

Mucuy-kak Guevara ^{1,2}

Facultad de Ciencias Universidad Nacional Autónoma de México México City, México

Camino Balbuena³

Departamento de Ingeniería Civil y Ambiental Universitat Politècnica de Catalunya Barcelona, Spain

Hortensia Galeana-Sánchez ⁴

Instituto de Matemáticas Universidad Nacional Autónoma de México México City, México

Abstract

Let D = (V, A) be a digraph, an arc subset $A' \subseteq A$ and a surjective mapping $\phi: A \to A'$ such that the set of heads of A' is V and $\phi|A' = Id$ and for every vertex $j \in V$, $\phi(\omega^{-}(j)) \subset \omega^{-}(j) \cap A'$. The partial line digraph of D, $\mathcal{L}D$, is the digraph with vertex set $V(\mathcal{L}D) = A'$ and set of arcs $A(\mathcal{L}D) = \{(ij, \phi(j, k)) : (j, k) \in A\}$. In this paper we prove the following results: Let k, l be two natural numbers such that $1 \le l \le k$, and D a digraph with $\delta^-(D) \ge 1$. Then the number of (k, l)-kernels of D is less than or equal to the number of (k,l)-kernels of $\mathcal{L}D$. Moreover, if l < kand the girth of D is at least l+1, then these two numbers are equal. The number of semikernels of D is equal to the number of semikernels of $\mathcal{L}D$. Also we introduce the concept of (k,l)-Grundy function as a generalization of the concept of Grundy function and we prove that the number of (k, l)-Grundy functions of D is equal to the number of (k, l)-Grundy functions of every partial line digraph $\mathcal{L}D$.

Keywords: Digraphs, in-domination, kernel, Grundy function.

1 Introduction

Throughout the paper, D=(V,A) denotes a loopless digraph with set of vertices V and arc set A. Let $\omega^-(x)$ stand for the set of arcs having vertex x as their terminal vertex, and $\omega^+(x)$ stand for the set of arcs having vertex x as their initial vertex. Thus, the *in-degree* of x is $d^-(x)=|\omega^-(x)|$ and the out-degree of x is $d^+(x)=|\omega^+(x)|$. The minimum in-degree (minimum out-degree) of D is $\delta^-(D)=\min\{d_D^-(x):x\in V\}$ ($\delta^+(D)=\min\{d_D^-(x):x\in V\}$ respectively). Moreover, given a set $U\subseteq V$, $\omega^-(U)=\{(x,y)\in A:y\in U\}$ and $x\notin U\}$. The distance from x to y is denoted by $d_D(x,y)$ and it is defined to be the length of a shortest $x\to y$ directed path.

A set $K \subset V(D)$ is said to be a *kernel* if it is both independent (for every two vertices $x, y \in K$, $d_D(x, y) \geq 2$,) and absorbing (a vertex not in K has a successor in K). This concept was first introduced in [8] by Von Neumann and Morgensten in the context of Game Theory as a solution for cooperative n-player games. The concept of a kernel is important to the theory of digraphs because it arises naturally in applications such as Nimtype games, logic, and facility location, to name a few. Several authors have been investigating sufficient conditions for the existence of kernels in digraphs, for a comprehensive survey see for example [3], [5] and Chapter 15 of [7].

Let l, k be two integers such that $l \geq 1$ and $k \geq 2$. A (k, l)-kernel of a digraph D is a subset of vertices K which is both k-independent $(d_D(u, v) \geq k$ for all $u, v \in K$) and l-absorbing $(d_D(x, K) \leq l$ for all $x \in V \setminus K$). Thus every kernel is a (2, 1)-kernel and a quasikernel, introduced in [6], is a (2, 2)-kernel.

Grundy functions are very useful in the context of game theory and they are nearly related to kernels as a digraph with Grundy function has also a kernel.

Research supported by the Ministerio de Educación y Ciencia, Spain, the European Regional Development Fund (ERDF) under project MTM2014-60127-P. CONACyT-México under project 219840 and PAPIIT-México under projects IN108715 and IN115816.

² Email: mucuy-kak.guevara@ciencias.unam.mx

³ Email: m.camino.balbuena@upc.edu

⁴ Email: hgaleana@matem.unam.mx

Download English Version:

https://daneshyari.com/en/article/6423729

Download Persian Version:

https://daneshyari.com/article/6423729

Daneshyari.com