Combinatorial Recurrences and Linear Difference Equations

M. José Jiménez ${ }^{1,2}$
Departament de Matemàtiques
Universitat Politècnica de Catalunya
Barcelona, Spain

Andrés M. Encinas ${ }^{3}$

Departament de Matemàtiques
Universitat Politècnica de Catalunya
Barcelona, Spain

Abstract

In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well-known recurrences that appear in enumerative combinatorics. In particular, we focussed on triangular arrays of depth 2 , since they are closely related to the solution of linear three-term recurrences. We show through some simple examples how these triangular arrays appear as essential components in the expression of some classical orthogonal polynomials and combinatorial numbers.

Keywords: Combinatorial identities, triangular matrices, finite difference equations, orthogonal polynomials.

1 Introduction

In this work we are interested in obtaining the unique solution of the initial value problem

$$
\begin{equation*}
a_{k} z_{k+1}-b_{k} z_{k}+c_{k-1} z_{k-1}=0, k \in \mathbb{N}^{*}, z_{0}=1, z_{1}=q, \tag{1}
\end{equation*}
$$

where $q \in \mathbb{R}^{*},\left(a_{k}\right),\left(b_{k}\right)$ and $\left(c_{k}\right)$ are sequences of real numbers such that $a_{k}, c_{k} \neq 0$ for all k. Since $\left(z_{k}\right)$ does not depend on a_{0} and b_{0} we always assume that $b_{0}=q$. In addition, we also assume the usual convention that empty sums and empty products are defined as 0 and 1 , respectively.

As we will show, the solution of (1) can be expressed through double sequences determined by recurrences that are related with combinatorial recurrences. Specifically, given $n \in \mathbb{N}^{*}$ we call triangular array of depth n to any double sequence, indexed from 0 , such that $t_{k, m}=0$ when $0 \leq k<n m$. When necessary, we also assume that $t_{k, m}=0$ when k or m are negative integers. If we identify double sequences with infinite matrices, then the subspace of triangular arrays of depth n is identify with a subspace of lower triangular matrices with $n m$ null entries in column m. We consider triangular arrays given by recurrence relations. Specifically, given $g=\left(g_{k, m}\right), h=\left(h_{k, m}\right)$, for any $n \in \mathbb{N}^{*}$ we define the triangular array of depth $n,\left(t_{k, m}\right)$, as $t_{0,0}=1$ and

$$
\begin{equation*}
t_{k, m}=g_{k-1, m} t_{k-1, m}+h_{k-n, m-1} t_{k-n, m-1}, \quad k \geq n m ; \quad m \geq 0, \quad k+m \geq 1 . \tag{2}
\end{equation*}
$$

The linear character of the above recurrence allows us to solve it by determining each column in terms of the preceding ones.
Theorem 1.1 Given the double sequences $\left(g_{k, m}\right),\left(h_{k, m}\right)$, for any $n \in \mathbb{N}^{*}$ the unique triangular array of depth n satisfying the recurrence (2) is

$$
t_{k, 0}=\prod_{j=0}^{k-1} g_{j, 0}, \quad t_{k, m}=\sum_{s=2 m}^{k} h_{s-n, m-1} t_{s-n, m-1} \prod_{j=s}^{k-1} g_{j, m}, k \geq n m, m \geq 1
$$

In particular, $t_{n m, m}=\prod_{j=0}^{m-1} h_{n j, j}$ for any $m \in \mathbb{N}$.
We denote by $\mathscr{G}_{2}(g, h)$ the unique triangular array of depth 2 determined by the recurrence (2) and moreover, the double sequences g and h are called its generators.

[^0]
https://daneshyari.com/en/article/6423753

Download Persian Version:
https://daneshyari.com/article/6423753

Daneshyari.com

[^0]: ${ }^{1}$ This work has been partly supported by the Spanish Research Council (Comisión Interministerial de Ciencia y Tecnología,) under project MTM2014-60450-R.
 ${ }^{2}$ Email: maria.jose.jimenez@upc.edu
 ${ }^{3}$ Email: andres.marcos.encinas@upc.edu

