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Abstract

We call a graph positive if it has a nonnegative homomorphism number into any target graph
with real edge weights. The Positive Graphs Conjecture offers a structural characterization:
these are exactly the graphs that can be obtained by gluing together two copies of the same
graph along an independent set of vertices. In this talk I will discuss our recent results on
the Positive Graphs Conjecture.
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1 Positive Graphs Conjecture

Let hom(F,G) denote the number of mappings from V (F ) to V (G) that take each
edge of F into an edge of G. For instance, hom(C4, G) is roughly the number of
4-cycles in G, but non-adjacent vertices of C4 may be mapped into the same vertex
of G.

We may extend the definition of hom to allow real edge weights on the target
graph G, including negative ones:

hom(F,G) =
∑

ϕ:V (F )→V (G)

∏
ij∈E(F )

wϕ(i)ϕ(j)

We call a graph F positive if hom(F,G) ≥ 0 holds for any edge-weighted
graph G. Here are some examples:

The positive graphs shown above follow a specific pattern. Suppose we have a
graphH where the vertices s1, s2, . . . sk form a stable set. LetH ′ be a disjoint copy
ofH and identify each si with s′i. A graph F obtained this way is called symmetric.
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It is easy to see that all symmetric graphs are positive. The Positive Graphs
Conjecture [?] states that this implication is in fact an equivalence:

Conjecture 1.1 G is positive⇔ G is symmetric

The conjecture is about simple graphs, but in this talk, we’ll use multigraphs to
attack it. The reason for this is that there are two different notions of positivity: one
for simple graphs and another for multigraphs. The one we’ve just defined is the
natural notion in the theory of multigraphs. More on that later.
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