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a b s t r a c t

The strong chromatic index of a multigraph is the minimum k such
that the edge set can be k-colored requiring that each color class
induces a matching. We verify a conjecture of Faudree, Gyárfás,
Schelp and Tuza, showing that every planar multigraphwithmaxi-
mumdegree atmost 3 has strong chromatic index atmost 9, which
is sharp.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

All multigraphs in this paper are loopless. A strong k-edge-coloring of a multigraph G is a coloring
φ : E(G) → [k] such that if any two edges e1 and e2 are either adjacent to each other or adjacent to
a common edge, then φ(e1) ≠ φ(e2). In other words, the edges in each color class form an induced
matching in the originalmultigraph. The strong chromatic index ofG, denoted byχ ′

s(G), is theminimum
k for which G has a strong k-edge-coloring. This is equivalent to finding the chromatic number of the
square of the line graph of G.
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Fouquet and Jolivet [8,7] introduced the notion of strong edge-coloring, which was used to solve a
problem involving radio networks and their frequencies. More details on this application can be found
in [19,20].

For general graphs, the greedy algorithmprovides an upper bound onχ ′
s of 2(∆−1)+2(∆−1)2+1,

where ∆ denotes the maximum degree of the multigraph. At a 1985 seminar in Prague, Erdős and
Nešetřil conjectured that in fact a stronger upper bound holds, which if true, is best possible (see [4,5]).

Conjecture 1 (Erdős and Nešetřil ’85). If G is a graph with maximum degree∆, then

χ ′

s(G) ≤


5
4
∆2, if ∆ is even,

5
4
∆2

−
1
2
∆+

1
4
, if ∆ is odd.

When G has maximum degree at most 3, the conjecture was verified by Andersen [1], who proved
the conjecture for multigraphs, and independently by Horák, Qing and Trotter [13]. In general, the
problem remains open with the best known upper bound due to Molloy and Reed [17] using proba-
bilistic techniques.2

Theorem (Molloy and Reed ’97). For large enough∆, every graph G with maximum degree∆ has χ ′
s(G)

≤ 1.998∆2.

Faudree et al. [6] show that when restricted to planar multigraphs, χ ′
s(G) ≤ 4∆ + 4µ, where

µ denotes the maximum number of parallel edges connecting a pair of vertices in G. Additionally,
they show that for every positive integer k ≥ 2, there exists a planar graph G with ∆ = k and
χ ′
s(G) = 4∆− 4.
Borodin and Ivanova [2] show that if a planar graph G has maximum degree at most ∆ and girth

(i.e. the length of a shortest cycle) at least 40⌊∆2 ⌋ + 1, then χ ′
s(G) ≤ 2∆− 1.

In regard to subcubic graphs, i.e., graphs with maximum degree at most 3, Faudree et al. [6] pose
the following set of conjectures.

Conjecture 2 (Faudree et al. ’90). Let G be a subcubic graph.

2.1 χ ′
s(G) ≤ 10.

2.2 If G is bipartite, then χ ′
s(G) ≤ 9.

2.3 If G is planar, then χ ′
s(G) ≤ 9.

2.4 If G is bipartite and the degree sum along every edge is at most 5, then χ ′
s(G) ≤ 6.

2.5 If G is bipartite with girth at least 6, then χ ′
s(G) ≤ 7.

2.6 If G is bipartite with large girth, then χ ′
s(G) ≤ 5.

Andersen [1], and independently Horák, Qing and Trotter [13], proved Conjecture 2.1. Conjec-
ture 2.2 was verified by Steger and Yu [21]. Conjecture 2.4 was confirmed by Wu and Lin [22] and
was generalized by Nakprasit and Nakprasit [18]. The previously mentioned result of Borodin and
Ivanova [2] verified Conjecture 2.6 for planar graphs. The authors know of no results which pertain to
Conjecture 2.5.

The purpose of this paper is to verify Conjecture 2.3. That is, we prove the following theorem,which
is best possible by considering the complement of the cycle of length six.

Theorem 1. Every subcubic, planar multigraph G with no loops has χ ′
s(G) ≤ 9.

The proof of this result yields a polynomial time algorithm in terms of the number of vertices that
will color any subcubic, planar multigraph using at most nine colors. Theorem 1 implies the following
corollary.

2 Recently, Bruhn and Joos [3] claim to have improved this bound to 1.93∆2 .
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