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a b s t r a c t

We present a necessary condition for (ℓ − 1)-connected combina-
torial (2ℓ + 1)-manifolds to be tight. As a corollary, we show that
there is no tight combinatorial three-manifoldwith first Betti num-
ber at most two other than the boundary of the four-simplex and
the nine-vertex triangulation of the three-dimensional Klein bottle.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Tight combinatorial manifolds are rare but very special objects. There are strong necessary condi-
tions on when a combinatorial manifold can be tight and it is conjectured that all tight combinatorial
manifolds are strongly minimal triangulations [15, Conjecture 1.3].

There are two infinite families of tight combinatorial manifolds known due to Kühnel [14] and
Datta and Singh [8], and there are a number of very famous sporadic examples, see [15] for an
overview. Furthermore, additional examples have been found recently and further infinite families
are conjectured [6].

Given a combinatorial manifold M it is difficult to check in general whether or not M is tight. One
way to do this is to look at all regular simplex-wise linear functions on M and check if they all have
the minimum number of critical points, i.e., if they are all perfect, see [2] for an elaborate way to do
this. As a consequence, necessary as well as sufficient conditions for tightness are highly sought after.

Here we establish new necessary conditions for the tightness of odd-dimensional combinatorial
manifolds by analysing topological properties of slicings, i.e., co-dimension onenormal sub-manifolds,
which do not depend on the topology of the surrounding manifold.
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As a result, we present upper bounds on the number of vertices of a combinatorial manifold M in
terms of its Betti numbers, this way disqualifying large classes of topological manifolds from having
tight triangulations at all.

In particular we prove the following result about (ℓ − 1)-connected combinatorial (2ℓ + 1)-
manifolds.

Theorem 1.1. Let M be an F-orientable compact closed (ℓ−1)-connected (2ℓ+1)-manifold represented
by an n-vertex F-tight combinatorial manifold M. Then

βℓ(MM, F) = βℓ+1(MM, F) ≥


(−1)ℓ+1 (1 − ⌊n/2⌋)ℓ+1(1 − ⌈n/2⌉)ℓ+1

(ℓ + 1)! (1 − n)ℓ+1


(1.1)

where (a)n = a · (a + 1) · (a + 2) · · · · · (a + n − 1) denotes the Pochhammer symbol.

Theorem 1.1 complements results about (ℓ − 1)-connected combinatorial 2ℓ-manifolds due to
Kühnel [14]. As of today, the known cases of equality in Inequality (1.1) are the boundary of the
simplex (ℓ ≥ 1, βℓ = 0) and the 13-vertex triangulation of SU(3)/SO(3) (ℓ = 2 and βℓ = 1).

As a direct consequence any (F-)tight connected combinatorial three-manifold M with β1(M, F)
≤ 2 cannot have more than 12 vertices. Together with further results presented in Section 6 and
extended computer experiments this leads to the following result.

Corollary 1.2. The boundary of the simplex and the nine-vertex three-dimensional Klein Bottle S2 S1 are
the only tight combinatorial three-manifolds with first Betti number at most two.

Themain results of this article can be generalised to homologymanifolds: the proof of Theorem 1.1
mainly relies on the Upper Bound Theorem [19,20] and on counting faces. Both of these arguments
hold in themore general case of homologymanifolds. However, since themain focus of this article is on
PL triangulations of manifolds, Theorem 1.1 is phrased in amore specialised form using combinatorial
manifolds.

2. Preliminaries

2.1. Combinatorial manifolds

A combinatorial d-manifold M is an abstract pure simplicial complex of dimension d such that
all vertex links are triangulated standard PL-spheres. The f -vector of M is a (d + 1)-tuple f (M) =

(f0, f1, . . . , fd) where fi denotes the number of i-dimensional faces of M . The zero-dimensional faces
of M are called vertices, the one-dimensional faces are called edges and the d-dimensional faces are
referred to as facets. The set of vertices of M will be denoted by V (M) or just V if M is given by the
context.

We call M k-neighbourly if fk−1 =


f0
k


, i.e., if it contains all possible (k − 1)-dimensional faces.

An n-vertex combinatorial d-manifoldM distinct from the boundary of the (d + 1)-simplex can be at
most (⌊ d+2

2 ⌋)-neighbourly. In this case the f -vector of an odd-dimensional combinatorial manifoldM
is already determined to be the one of the boundary complex of the (even-dimensional) cyclic (d+1)-
polytope with n vertices. This statement is known as the Upper Bound Theorem due to Novik [19], and
Novik and Swartz [20].

Given a combinatorial manifoldM with vertex set V (M) and W ⊂ V (M), the simplicial complex

M[W ] = {σ ∈ M | V (σ ) ⊂ W },

i.e., the simplicial complex of all faces ofM with vertex set inW , is called the sub-complex of M induced
by W .



Download English Version:

https://daneshyari.com/en/article/6424097

Download Persian Version:

https://daneshyari.com/article/6424097

Daneshyari.com

https://daneshyari.com/en/article/6424097
https://daneshyari.com/article/6424097
https://daneshyari.com

