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a b s t r a c t

The boxicity of a graph G = (V , E) is the smallest integer k for
which there exist k interval graphs Gi = (V , Ei), 1 6 i 6 k, such
that E = E1 ∩ · · · ∩ Ek. In the first part of this note, we prove that
every graph onm edges has boxicityO(

√
m logm), which is asymp-

totically best possible. We use this result to study the connection
between the boxicity of graphs and their Colin de Verdière invari-
ant, which share many similarities. Known results concerning the
two parameters suggest that for any graph G, the boxicity of G is at
most the Colin de Verdière invariant of G, denoted byµ(G). We ob-
serve that every graph G has boxicity O(µ(G)4(logµ(G))2), while
there are graphs Gwith boxicityΩ(µ(G)

√
logµ(G)). In the second

part of this note,we focus on graphs embeddable on a surface of Eu-
ler genus g . We prove that these graphs have boxicity O(

√
g log g),

while some of these graphs have boxicity Ω(
√
g log g). This im-

proves the previously best known upper and lower bounds. These
results directly imply a nearly optimal bound on the dimension of
the adjacency poset of graphs on surfaces.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Given a collection C of subsets of a set Ω , the intersection graph of C is defined as the graph with
vertex set C, in which two elements of C are adjacent if and only if their intersection is non empty. A
d-box is the Cartesian product [x1, y1]× · · ·× [xd, yd] of d closed intervals of the real line. The boxicity
box(G) of a graph G, introduced by Roberts [14] in 1969, is the smallest integer d > 1 such that G is
the intersection graph of a collection of d-boxes. The intersection G1 ∩ · · · ∩ Gk of k graphs G1, . . . ,Gk
defined on the same vertex set V , is the graph (V , E1 ∩· · ·∩Ek), where Ei (1 6 i 6 k) denotes the edge
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set of Gi. Observe that the boxicity of a graph G can equivalently be defined as the smallest k such that
G is the intersection of k interval graphs.

In the first part of this note, we prove that every graph on m edges has boxicity O(
√
m logm), and

that there are examples showing that this bound is asymptotically best possible.
A minor-monotone graph invariant, usually denoted by µ(·), was introduced by Colin de Verdière

in 1990 [4]. It relates to the maximal multiplicity of the second largest eigenvalue of the adjacency
matrix of a graph, in which the diagonal entries can take any value and the entries corresponding to
edges can take anypositive values (a technical assumption, called the StrongArnold Property, has to be
added to avoid degenerate cases, but we omit the details as they are not necessary in our discussion).

It was proved by Colin de Verdière that µ(G) 6 1 if and only if G is a linear forest, µ(G) 6 2 if and
only if G is an outerplanar graph, and µ(G) 6 3 if and only if G is a planar graph. Scheinerman proved
in 1984 that outerplanar graphs have boxicity at most two [15] and Thomassen proved in 1986 that
planar graphs have boxicity at most three [17]. Since a linear forest is an interval graph, these results
prove that for any planar graph G, box(G) 6 µ(G).

These two graph invariants share several other similarities: every graph G of treewidth at most
k has box(G) 6 k + 1 [3] and µ(G) 6 k + 1 [9]. For any vertex v of G, box(G − v) 6 box(G) + 1
and if G − v contains an edge, µ(G − v) 6 µ(G) + 1. Both parameters are bounded for graphs G
with crossing number at most k: box(G) = O(k1/4(log k)3/4) [2] and µ(G) 6 k + 3 [4]. It is known
that every graph on n vertices has boxicity at most n/2, and equality holds only for complements of
perfect matchings [14]. These graphs have Colin de Verdière invariant at least n−3 [11]. On the other
hand every graph on n vertices has Colin de Verdière invariant at most n − 1, and equality holds only
for cliques (which have boxicity 1).

It is interesting to note that in each of the results above, the known upper bound on the boxicity
is better than the known upper bound on the Colin de Verdière invariant. This suggests that for any
graph G, box(G) 6 µ(G).

The following slightlyweaker relationship between the boxicity and the Colin deVerdière invariant
is a direct consequence of the fact that any graphG excludes the clique onµ(G)+2 vertices as aminor,
and graphs with no Kt-minor have boxicity O(t4(log t)2) [6].

Proposition 1. There is a constant c0 such that for any graph G, box(G) 6 c0µ(G)4(logµ(G))2.

It follows that the boxicity is bounded by a polynomial function of the Colin de Verdière invariant.
Pendavingh [13] proved that for any graph G with m edges, µ(G) 6

√
2m. Interestingly, there did

not exist any corresponding result for the boxicity and it was suggested by András Sebő that graphs
G with large boxicity (as a function of their number of edges) might satisfy box(G) > µ(G). As we
observe in the next section, there are graphs on m edges, with boxicity Ω(

√
m logm). It follows that

there are graphs Gwith boxicity Ω(µ(G)
√
logµ(G)). These graphs show that the boxicity is not even

bounded by a linear function of the Colin de Verdière invariant.
In the second part of this paper, we show that every graph embeddable on a surface of Euler genus

g has boxicity O(
√
g log g), while there are graphs embeddable on a surface of Euler genus g with

boxicity Ω(
√
g log g). This improves the upper bound O(g) and the lower bound Ω(

√
g) given in [6].

(Incidentally, graphs embeddable on a surface of Euler genus g have Colin de Verdière invariant O(g)
and it is conjectured that the right bound should be O(

√
g) [4,16].)

Our upper bound on the boxicity of graphs on surfaces has a direct corollary on the dimension
of the adjacency poset of graphs on surfaces, introduced by Felsner and Trotter [8], and investigated
in [7] and [6].

2. Boxicity and the number of edges

We will use the following two lemmas of Adiga, Chandran, and Mathew [2]. A graph G is k-
degenerate if every subgraph of G contains a vertex of degree at most k. In what follows, the logarithm
is taken to be the natural logarithm (and its base is denoted by e).

Lemma 2 ([2]). Any k-degenerate graph on n > 2 vertices has boxicity at most (k + 2)⌈2e log n⌉.
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