Complex spherical codes with two inner products

CrossMark

Hiroshi Nozaki, Sho Suda
Department of Mathematics Education, Aichi University of Education, Kariya, 448-8542, Japan

ARTICLE INFO

Article history:

Received 12 March 2015
Accepted 22 July 2015
Available online 3 September 2015

Abstract

A finite set X in a complex sphere is called a complex spherical 2-code if the number of inner products between two distinct vectors in X is equal to 2 . In this paper, we characterize the tight complex spherical 2-codes by doubly regular tournaments or skew Hadamard matrices. We also give certain maximal 2-codes relating to skew-symmetric D-optimal designs. To prove them, we show the smallest embedding dimension of a tournament into a complex sphere by the multiplicity of the smallest or secondsmallest eigenvalue of the Seidel matrix.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Let X be a finite set of points on the complex unit sphere $\Omega(d)$ in \mathbb{C}^{d}. The angle set $A(X)$ is defined to be

$$
A(X)=\left\{x^{*} y \mid x, y \in X, x \neq y\right\}
$$

where x^{*} is the transpose conjugate of a column vector x. A finite set X is called a complex spherical s-code if $|A(X)|=s$ and $A(X)$ contains an imaginary number. The value s is called the degree of X. For $X, X^{\prime} \subset \Omega(d)$, we say that X is isomorphic to X^{\prime} if there exists a unitary transformation from X to X^{\prime}. An s-code $X \subset \Omega(d)$ is said to be largest if X has the largest possible cardinality in all s-codes in $\Omega(d)$. One of major problems on s-codes is to classify largest s-codes for given s and d.

We will survey Euclidean finite sets with only s distances. For $X \subset \mathbb{R}^{d}$, we define

$$
D(X)=\{d(x, y) \mid x, y \in X, x \neq y\}
$$

[^0]where $d(x, y)$ is the Euclidean distance of x and y. A finite set X is called an s-distance set if $|D(X)|=s$ holds. We have an upper bound for the size of an s-distance set in \mathbb{R}^{d}, namely $|X| \leq\binom{ d+s}{s}$ [3]. Clearly the largest 1-distance set in \mathbb{R}^{d} is the regular simplex for any d. Largest 2-distance sets in \mathbb{R}^{d} are classified for $d \leq 7[9,11]$. Largest s-distance sets in \mathbb{R}^{2} are classified for $s \leq 5[10,19,20]$. The largest 3 -distance set in \mathbb{R}^{3} is the vertex set of the icosahedron [21]. The classification of largest s-distance sets is still open for others (s, d). A largest 2-distance set in \mathbb{R}^{8} is given in [11], and it attains the upper bound.

A spherical s-distance set particularly deserves attention because of the connection to association schemes or spherical t-designs (see [7,2] for details). A subset X of S^{d-1} is called a spherical t-design if for any polynomial f in d variables of degree at most t, the following equality holds:

$$
\frac{1}{\left|S^{d-1}\right|} \int_{S^{d-1}} f(x) d x=\frac{1}{|X|} \sum_{x \in X} f(x),
$$

where $\left|S^{d-1}\right|$ is the volume of S^{d-1}. If a spherical t-design X of degree s satisfies $t \geq 2 s-2$, then X has the structure of a Q-polynomial association scheme [7]. The size of an s-distance set in S^{d-1} is smaller than or equal to $\binom{d+s-1}{s}+\binom{d+s-2}{s-1}$ [7]. An s-distance set X is said to be tight if X attains this bound. A tight s-distance set becomes a minimal spherical t-design and satisfies $t=2 s$ [7]. The classification of tight s-distance sets is one of the most interesting problems, and this has been solved except for $s=2$ [4]. A largest 2-distance set on S^{d-1} is determined for $d \leq 93(d \neq 46,78)$ [13,5]. A largest 3 -distance set on S^{d-1} is determined for $d=2,3,8,22$ [21,14].

A simple graph $G=(V, E)$ is representable in \mathbb{R}^{d} if there is an embedding $\sigma: V \rightarrow \mathbb{R}^{d}$ such that

$$
d(\sigma(a), \sigma(b))=\left\{\begin{array}{l}
\alpha \text { if }(a, b) \in E, \\
\beta \text { otherwise },
\end{array}\right.
$$

for some $\alpha, \beta \in \mathbb{R}$. For a simple graph G, Roy [17] gave an explicit expression of the minimal dimension d such that G is representable in \mathbb{R}^{d} in terms of the multiplicity of the smallest or second-smallest eigenvalue of A. This embedding of a graph is useful for the classification of 2-distance sets [9,11].

Roy and Suda [18] gave the complex analogue of the spherical s-distance set theory. Complex spherical s-codes are closely related to complex spherical designs or non-symmetric association schemes. In this paper, we consider a complex spherical 2-code $X \subset \Omega(d)$. If X satisfies $A(X) \subset \mathbb{R}$, then the Gram matrix of X is real, and X can be embedded into \mathbb{R}^{d}. We may assume $A(X)$ contains an imaginary number α, and $A(X)=\{\alpha, \bar{\alpha}\}$, where $\bar{\alpha}$ is the conjugate of α. We have a natural upper bound [18]:

$$
|X| \leq \begin{cases}2 d+1 & \text { if } d \text { is odd } \tag{1.1}\\ 2 d & \text { if } d \text { is even }\end{cases}
$$

A 2-code X is said to be tight if X attains the bound (1.1). This is known as the absolute bound.
A tournament is a directed graph obtained by assigning a direction for each edge in an undirected complete graph. Formally, a tournament is a pair (V, E) such that the vertex set V is a finite set and the edge set $E \subset V \times V$ satisfies $E \cap E^{T}=\emptyset$ and $E \cup E^{T} \cup\{(x, x) \mid x \in V\}=V \times V$, where $E^{T}:=\{(x, y) \mid(y, x) \in E\}$. A complex spherical 2-code X has the structure of a tournament (X, E), where $E=\left\{(x, y) \in X \times X \mid x^{*} y=\alpha\right\}$. A tournament (V, E) is representable in $\Omega(d)$ if there exists a mapping φ from V to $\Omega(d)$ such that for all distinct $x, y \in V$,

$$
\varphi(x)^{*} \varphi(y)=\left\{\begin{array}{l}
\alpha \text { if }(x, y) \in E, \\
\bar{\alpha} \text { if }(y, x) \in E,
\end{array}\right.
$$

where α is an imaginary number with $\operatorname{Im}(\alpha)>0$. Such a mapping φ is said to be a representation of a tournament. We identify a representation with the image of the representation. Two tournaments $G=(V, E), G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ are isomorphic if there is a bijection from V to V^{\prime} such that $(x, y) \in E$ if and only if $(f(x), f(y)) \in E^{\prime}$. For two tournaments G and G^{\prime}, if G is not isomorphic to G^{\prime}, then a representation of G is not isomorphic to that of G^{\prime}. Let $\operatorname{Rep}(G)$ denote the smallest d such that G is representable in $\Omega(d)$. The Seidel matrix of G is defined to be $\sqrt{-1}\left(A-A^{T}\right)$, where A is the adjacency

https://daneshyari.com/en/article/6424109

Download Persian Version:
https://daneshyari.com/article/6424109

Daneshyari.com

[^0]: E-mail addresses: hnozaki@auecc.aichi-edu.ac.jp (H. Nozaki), suda@auecc.aichi-edu.ac.jp (S. Suda).
 http://dx.doi.org/10.1016/j.ejc.2015.07.016
 0195-6698/© 2015 Elsevier Ltd. All rights reserved.

