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In this paper, we classify the family of connected 2-geodesic-
transitive graphs of valency 2p where p is an odd prime.
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1. Introduction

In this paper, graphs are finite, simple and undirected. In a non-complete graph Γ , a vertex triple
(u, v, w) with v adjacent to both u and w is called a 2-arc if u ≠ w, and a 2-geodesic if in addition
u, w are not adjacent. An arc is an ordered pair of adjacent vertices. The graph Γ is said to be 2-arc-
transitive or 2-geodesic-transitive if its automorphism group Aut(Γ ) is transitive on arcs, and also on
2-arcs or 2-geodesics, respectively. Clearly, every 2-geodesic is a 2-arc, but some 2-arcs may not be
2-geodesics. IfΓ has girth 3 (length of the shortest cycle is 3), then the 2-arcs contained in 3-cycles are
not 2-geodesics. The graph in Fig. 1 is the Kneser graph KG6,2 which is 2-geodesic-transitive but not
2-arc-transitive with valency 6. Thus the family of non-complete 2-arc-transitive graphs is properly
contained in the family of 2-geodesic-transitive graphs.

The first remarkable result about 2-arc-transitive graphs comes from Tutte [16,17], and this family
of graphs has been studied extensively, see [10,12,13,15,18]. The local structure of the family of 2-
geodesic-transitive graphs was determined in [3]. The papers [4,5] give classifications of all finite
graphs which are 2-geodesic-transitive but not 2-arc-transitive, and which have valency 4 or prime
valency, respectively. In this paper, we will give a classification of the family of 2-geodesic-transitive
graphs of valency 2pwhere p is a prime.

For a vertex u of Γ , Γ (u) denotes the set of vertices which are adjacent to u. The graph Γ is
said to be locally primitive (locally imprimitive) if for every vertex u, the stabilizer Au acts primitively
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Fig. 1. Kneser graph KG6,2 .

(imprimitively) on Γ (u) where A := Aut(Γ ). A subgraph X of Γ is an induced subgraph if two vertices
of X are adjacent in X if and only if they are adjacent in Γ . When U ⊆ V (Γ ), we denote by [U] the
subgraph of Γ induced by U . Let Λ be a finite graph. Then Γ is called locally Λ if for every u ∈ V (Γ ),
[Γ (u)] ∼= Λ. For two positive integers m, r , we denote by F (m, r) the family of all connected locally
mKr graphs. The connection between the family of graphs in F (m, r) and partial linear spaces was
studied in [3]. The line graph L(Γ ) of Γ is the graph whose vertex set is the edge set of Γ , and any two
distinct vertices are adjacent if and only if they have a common vertex in Γ .

Theorem 1.1. Let Γ be a non-complete connected 2-geodesic-transitive graph of valency 2p where p is
an odd prime. Let A = Aut(Γ ) and u ∈ V (Γ ). Then one of the following holds.

(1) Γ is locally primitive of girth 3, and Γ is one of the following graphs: the halved 5-cube, the
complement of the triangular graph T (7), the Conway–Smith graph or the Hall graph.

(2) Γ is locally imprimitive of girth 3, and Γ ∈ {K3[p],K(p+1)[2]}, or Γ ∈ F (p, 2), or one of the
following is true.

(2.1) Γ is a line graph and [Γ (u)] ∼= K2�Kp.
(2.2) Γ is a line graph, Au has two blocks of cardinality p in Γ (u) but does not have blocks of

cardinality 2, and the subgraph induced by a block is isomorphic to Kp.
(2.3) Au has p blocks, ∆i = {vi, v

′

i}, i = 1, . . . , p, in Γ (u) but does not have blocks of cardinality p,
Σ := [Γ (u)] is connected and [∆i] ∼= K2. Either [∆i ∪ ∆j] ∼= C4 whenever i ≠ j, |Σ(vi)| = p and
Σ(vi) = Σ2(v

′

i) ∪ {v′

i}; or Σ ∼= Σ[K2], where Σ as in Definition 3.6, is a vertex-transitive graph of p
vertices with valency 2(p − 1)/3 or (p − 1)/2.

(3) Γ has girth at least 4 and is 2-arc-transitive.

The graphs in Theorem 1.1 are defined in Sections 2 and 3.

Remark 1.2. (1) For any prime p, there exist graphs in the family F (p, 2). For instance, the Hamming
graph H(p, 3) (with vertex set Zp

3 = Z3 × Z3 × · · · × Z3, where Z3 = {0, 1, 2} is the ring of integers
modulo 3, and two vertices u, v are adjacent if and only if u − v has exactly one non-zero entry) is in
F (p, 2), and it is also 2-geodesic-transitive (see [6, Proposition 2.2]).

(2) The Kneser graph KG6,2 belongs to the class F (3, 2).
(3) Suppose that Γ is a line graph in Theorem 1.1(2.2), Au has two blocks ∆1, ∆2 of cardinality p in

Γ (u), and [∆1] ∼= Kp ∼= [∆2]. Then |Γ (u)∩Γ (v)∩∆i| < p−1where v ∈ ∆j and {∆i, ∆j} = {∆1, ∆2}.
(4) Let Γ = J(p + 2, p) where p is an odd prime. Then [Γ (u)] ∼= K2�Kp, and by [6, Proposition

2.1], Γ is 2-geodesic-transitive, so Γ is in Theorem 1.1(2.1). (Let Ω = {1, 2, . . . , n} where n ≥ 3,
and let 1 ≤ k ≤ [

n
2 ] where [

n
2 ] is the integer part of n

2 . Then the Johnson graph J(n, k) is the graph
whose vertex set is the set of all k-subsets of Ω , and two k-subsets u and v are adjacent if and only if
|u ∩ v| = k − 1.)
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