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a b s t r a c t

A k-box B = (R1, . . . , Rk), where each Ri is a closed interval on the
real line, is defined to be the Cartesian product R1 × R2 × · · · × Rk.
If each Ri is a unit-length interval, we call B a k-cube. The boxicity
of a graph G, denoted as box(G), is the minimum integer k such
that G is an intersection graph of k-boxes. Similarly, the cubicity of
G, denoted as cub(G), is the minimum integer k such that G is an
intersection graph of k-cubes.

It was shown in [L. Sunil Chandran, Mathew C. Francis, Naveen
Sivadasan. Cubicity and bandwidth. Graphs and Combinatorics 29
(1) (2013) 45–69] that, for a graph Gwith n vertices and maximum
degree ∆, cub(G) ≤ ⌈4(∆ + 1) log n⌉. In this paper we show the
following:
• For a k-degenerate graph G, cub(G) ≤ (k + 2)⌈2e log n⌉. This

bound is tight up to a constant factor.

Since k is atmost∆ and canbemuch lower, this clearly is an asymp-
totically stronger result. Moreover, we have an efficient deter-
ministic algorithm that runs in O(n2k) time to output an O(k log
n)-dimensional cube representation for G. The above result has the
following interesting consequences:

• If the crossing number of a graph G is t , then box(G) is O(t
1
4

⌈log t⌉
3
4 ). This bound is tight up to a factor of O((log t)

1
4 ). We

also show that if G has n vertices, then cub(G) is O(log n +

t1/4 log t).
• Let dim(P ) denote the poset dimension of a partially ordered set

(P , ≤). We show that dim(P ) ≤ 2(k + 2)⌈2e log n⌉, where k
denotes the degeneracy of the underlying comparability graph
of P .

• We show that the cubicity of almost all graphs in the G(n,m)
model is O(dav log n), where dav =

2m
n denotes the average

degree of the graph under consideration.
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1. Introduction

A graph G is an intersection graph of sets from a family of setsF if there exists amap f : V (G) → F
such that (u, v) ∈ E(G) ⇔ f (u) ∩ f (v) ≠ ∅. The representation of graphs as the intersection graphs
of various geometrical objects is a well studied topic in graph theory. Probably the most well studied
class of intersection graphs is the class of interval graphs. Interval graphs are the intersection graphs
of closed intervals on the real line. The class of indifference graphs or unit interval graphs is a class of
restricted forms of interval graphs that allow only intervals of unit length.

An interval on the real line can be generalized to a ‘‘k-box’’ in Rk. A k-box B = (R1, . . . , Rk), where
each Ri is a closed interval on the real line, is defined to be the Cartesian product R1 × R2 × · · · × Rk. If
each Ri is a unit-length interval, we call B a k-cube. Thus, 1-boxes are just closed intervals on the real
line whereas 2-boxes are axis-parallel rectangles in the plane. The parameter boxicity of a graph G,
denoted as box(G), is theminimum integer k such that G is an intersection graph of k-boxes. Similarly,
the cubicity of G, denoted as cub(G), is the minimum integer k such that G is an intersection graph of
k-cubes. Thus, interval graphs are the graphs with boxicity equal to 1 and unit interval graphs are the
graphs with cubicity equal to 1. A k-box representation or a k-dimensional box representation of a graph
G is a mapping of the vertices of G to k-boxes such that two vertices in G are adjacent if and only if
their corresponding k-boxes have a non-empty intersection. In a similar way, we define the k-cube
representation (or k-dimensional cube representation) of a graph G. Since k-cubes (by definition) are
also k-boxes, the boxicity of a graph is at most its cubicity.

The concepts of boxicity and cubicity were introduced by F.S. Roberts in 1969 [19]. Roberts showed
that for any graph G on n vertices, box(G) ≤ ⌊

n
2⌋ and cub(G) ≤ ⌊

2n
3 ⌋. Both bounds are tight since

box(K2,2,...,2) = ⌊
n
2⌋ and cub(K3,3,...,3) = ⌊

2n
3 ⌋ where K2,2,...,2 denotes the complete n/2-partite graph

with two vertices in each part and K3,3,...,3 denotes the complete n/3-partite graphwith three vertices
in each part. It is easy to see that the boxicity of any graph is at least the boxicity of any induced
subgraph of it.

Box representation of graphs finds application in niche overlap (competition) in ecology and to
problems of fleet maintenance in operations research (see [10]). Given a low dimensional box repre-
sentation, some well known NP-hard problems become polynomial time solvable. For instance, the
max-clique problem is polynomial time solvable for graphs with boxicity k because the number of
maximal cliques in such graphs is only O((2n)k).

1.1. Previous results on boxicity and cubicity

It was shown by Cozzens [9] that computing the boxicity of a graph is NP-hard. Kratochvíl [14]
showed that deciding whether the boxicity of a graph is at most 2 itself is NP-complete. It has been
shown by Yannakakis [23] that deciding whether the cubicity of a given graph is at least 3 is NP-hard.

Researchers have tried to bound the boxicity and cubicity of graph classes with special structure.
Scheinerman [20] showed that the boxicity of outerplanar graphs is at most 2. Thomassen [21] proved
that the boxicity of planar graphs is bounded from above by 3. Upper bounds for the boxicity of many
other graph classes such as chordal graphs, AT-free graphs, permutation graphs etc. were shown in [8]
by relating the boxicity of a graph with its treewidth. The cube representations of special classes of
graphs like hypercubes and complete multipartite graphs were investigated in [19,15,16].

Various other upper bounds on boxicity and cubicity in terms of graph parameters such as maxi-
mum degree, treewidth etc. can be seen in [4,5,3,12,8]. The ratio of cubicity to boxicity for any graph
on n vertices was shown to be at most ⌈log2 n⌉ in [6].

1.2. Equivalent definitions for boxicity and cubicity

Let G and G1, . . . ,Gb be graphs such that V (Gi) = V (G) for 1 ≤ i ≤ b. We say that G =
b

i=1 Gi

when E(G) =
b

i=1 E(Gi). Below, we state two very useful lemmas due to Roberts [19].
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