The maximum sum and the maximum product of sizes of cross-intersecting families

Peter Borg
Department of Mathematics, University of Malta, Msida MSD 2080, Malta

A R T I CLE INFO

Article history:

Available online 12 July 2013

Abstract

We say that a set $A t$-intersects a set B if A and B have at least t common elements. A family \mathcal{A} of sets is said to be t-intersecting if each set in $\mathcal{A} t$-intersects all the other sets in \mathcal{A}. Families $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}$ are said to be cross-t-intersecting if for any i and j in $\{1,2, \ldots, k\}$ with $i \neq j$, every set in $\mathcal{A}_{i} t$-intersects every set in \mathcal{A}_{j}. We prove that for any finite family \mathcal{F} that has at least one set of size at least t, there exists an integer $\kappa \leq|\mathcal{F}|$ such that for any $k \geq \kappa$, both the sum and the product of sizes of k cross- t-intersecting subfamilies $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$ (not necessarily distinct or non-empty) of \mathcal{F} are maxima if $\mathcal{A}_{1}=\cdots=\mathcal{A}_{k}=\mathscr{L}$ for some largest t-intersecting subfamily \mathcal{L} of \mathcal{F}. We then study the smallest possible value of κ and investigate the case $k<\kappa$; this includes a cross-intersection result for straight lines that demonstrates that it is possible to have \mathcal{F} and κ such that for any $k<\kappa$, the configuration $\mathcal{A}_{1}=\cdots=$ $\mathcal{A}_{k}=\mathscr{L}$ is neither optimal for the sum nor optimal for the product. We also outline solutions for various important families \mathcal{F}, and we provide solutions for the case when \mathcal{F} is a power set.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Unless otherwise stated, throughout this paper we shall use small letters such as x to denote positive integers or elements of a set, capital letters such as X to denote sets, and calligraphic letters such as \mathcal{F} to denote families (that is, sets whose elements are sets themselves). Unless specified, sets and families are taken to be finite and may be the empty set \emptyset. An r-set is a set of size r, that is, a set having exactly r elements. For any integer $n \geq 1,[n]$ denotes the set $\{1, \ldots, n\}$ of the first n positive integers.

[^0]Given an integer $t \geq 1$, we say that a set $A t$-intersects a set B if A and B have at least t common elements. A family \mathcal{A} is said to be t-intersecting if each set in $\mathcal{A} t$-intersects all the other sets in \mathcal{A} (i.e. $|A \cap B| \geq t$ for any $A, B \in \mathcal{A}$ with $A \neq B$). A 1 -intersecting family is also simply called an intersecting family. Families $\mathcal{A}_{1}, \ldots, \mathscr{A}_{k}$ are said to be cross-t-intersecting if for any i and j in $[k]$ with $i \neq j$, every set in $\mathcal{A}_{i} t$-intersects every set in \mathcal{A}_{j} (i.e. $|A \cap B| \geq t$ for any $A \in \mathcal{A}_{i}$ and any $B \in \mathcal{A}_{j}$). Cross-1-intersecting families are also simply called cross-intersecting families.

Let $\binom{[n]}{r}$ denote the family of all subsets of [n] of size r. The classical Erdős-Ko-Rado (EKR) Theorem [17] says that if n is sufficiently larger than r, then the size of any t-intersecting subfamily of $\binom{[n]}{r}$ is at most $\binom{n-t}{r-t}$, which is the number of sets in the t-intersecting subfamily of $\binom{[n]}{r}$ consisting of those sets having [t] as a subset. The EKR Theorem inspired a wealth of results of this kind, that is, results that establish how large a system of sets can be under certain intersection conditions; see [10,14, 18].

For t-intersecting subfamilies of a given family \mathcal{F}, the natural question to ask is how large they can be. For cross- t-intersecting families, two natural parameters arise: the sum and the product of sizes of the cross- t-intersecting families (note that the product of sizes of k families $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$ is the number of k-tuples $\left(A_{1}, \ldots, A_{k}\right)$ such that $A_{i} \in \mathcal{A}_{i}$ for each $i \in[k]$). It is therefore natural to consider the problem of maximising the sum or the product of sizes of k cross- t-intersecting subfamilies (not necessarily distinct or non-empty) of a given family \mathcal{F}.

The main result in this paper (Theorem 1.1 below) relates both the maximum sum and the maximum product of sizes of k cross- t-intersecting subfamilies of any family \mathcal{F} to the maximum size of a t-intersecting subfamily of \mathcal{F} when k is not smaller than a certain value depending on \mathcal{F} and t. It gives the maximum sum and the maximum product in terms of the size of a largest t-intersecting subfamily.

For any non-empty family \mathcal{F}, let $\alpha(\mathcal{F})$ denote the size of a largest set in \mathcal{F} (i.e. $\alpha(\mathcal{F})=$ $\max \{|F|: F \in \mathcal{F}\})$. Suppose $\alpha(\mathcal{F})<t$, and let $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}(k \geq 2)$ be subfamilies of \mathcal{F}. Then $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$ are cross- t-intersecting if and only if at most one of them is non-empty (since no set in $\mathcal{F} t$-intersects itself or another set in \mathcal{F}). Thus, if $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$ are cross- t-intersecting, then the product of their sizes is 0 and the sum of their sizes is at most the size $|\mathcal{F}|$ of \mathcal{F} (which is attained if and only if one of them is \mathcal{F} and the others are all empty). This completely solves our problem for the case $\alpha(\mathcal{F})<t$.

We now address the case $\alpha(\mathcal{F}) \geq t$. Before stating our main result, we need to introduce some definitions and parameters.

For any family \mathcal{A}, let $\mathcal{A}^{t,+}$ be the (t-intersecting) subfamily of \mathcal{A} given by

$$
\mathcal{A}^{t,+}=\{A \in \mathcal{A}:|A \cap B| \geq t \text { for any } B \in \mathcal{A} \text { such that } A \neq B\},
$$

and let

$$
\mathcal{A}^{t,-}=\mathcal{A} \backslash \mathscr{A}^{t,+} .
$$

In simple terms, a set A in \mathcal{A} is in $\mathcal{A}^{t,-}$ if there exists a set B in \mathcal{A} such that $A \neq B$ and A does not t-intersect B, otherwise A is in $\mathcal{A}^{t,+}$. The definitions of $\mathcal{A}^{t,+}$ and $\mathcal{A}^{t,-}$ are generalisations of the definitions of \mathscr{A}^{*} and \mathscr{A}^{\prime} in $[5,8,9,11,12]$, respectively; $\mathcal{A}^{*}=\mathcal{A}^{1,+}$ and $\mathcal{A}^{\prime}=\mathcal{A}^{1,-}$.

Let $l(\mathcal{F}, t)$ denote the size of a largest t-intersecting subfamily of a non-empty family \mathcal{F}. For any subfamily \mathcal{A} of \mathcal{F}, we define

$$
\beta(\mathcal{F}, t, \mathcal{A})= \begin{cases}\frac{l(\mathcal{F}, t)-\left|\mathcal{A}^{t,+}\right|}{\left|\mathcal{A}^{t,-}\right|} & \text { if } \mathcal{A}^{t,-} \neq \emptyset ; \\ \frac{l(\mathcal{F}, t)}{|\mathcal{F}|} & \text { if } \mathcal{A}^{t,-}=\emptyset ;\end{cases}
$$

so $\left|\mathcal{A}^{t,+}\right|+\beta(\mathcal{F}, t, \mathcal{A})\left|\mathcal{A}^{t,-}\right| \leq l(\mathcal{F}, t)$ (even if $\mathcal{A}^{t,-}=\emptyset$, because $\left|\mathcal{A}^{t,+}\right| \leq l(\mathcal{F}, t)$ since $\mathcal{A}^{t,+}$ is t-intersecting). We now define

$$
\beta(\mathcal{F}, t)=\min \{\beta(\mathcal{F}, t, \mathcal{A}): \mathcal{A} \subseteq \mathcal{F}\} .
$$

https://daneshyari.com/en/article/6424183

Download Persian Version:
https://daneshyari.com/article/6424183

Daneshyari.com

[^0]: E-mail address: p.borg.02@cantab.net.

