European Journal of Combinatorics 35 (2014) 117-130

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

The maximum sum and the maximum product of sizes of cross-intersecting families

Peter Borg

Department of Mathematics, University of Malta, Msida MSD 2080, Malta

ARTICLE INFO

Article history: Available online 12 July 2013

ABSTRACT

We say that a set A *t*-intersects a set B if A and B have at least t common elements. A family A of sets is said to be t-intersecting if each set in A *t*-intersects all the other sets in A. Families A_1, A_2, \ldots, A_k are said to be cross-t-intersecting if for any i and j in $\{1, 2, \ldots, k\}$ with $i \neq j$, every set in A_i *t*-intersects every set in A_j . We prove that for any finite family \mathcal{F} that has at least one set of size at least *t*, there exists an integer $\kappa \leq |\mathcal{F}|$ such that for any $k \geq \kappa$, both the sum and the product of sizes of k cross-t-intersecting subfamilies A_1, \ldots, A_k (not necessarily distinct or non-empty) of \mathcal{F} are maxima if $A_1 = \cdots = A_k = \mathcal{L}$ for some largest *t*-intersecting subfamily \mathcal{L} of \mathcal{F} . We then study the smallest possible value of κ and investigate the case $k < \kappa$; this includes a cross-intersection result for straight lines that demonstrates that it is possible to have \mathcal{F} and κ such that for any $k < \kappa$, the configuration $\mathcal{A}_1 = \cdots =$ $A_k = \mathcal{L}$ is neither optimal for the sum nor optimal for the product. We also outline solutions for various important families \mathcal{F} , and we provide solutions for the case when \mathcal{F} is a power set. © 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Unless otherwise stated, throughout this paper we shall use small letters such as x to denote positive integers or elements of a set, capital letters such as X to denote sets, and calligraphic letters such as \mathcal{F} to denote *families* (that is, sets whose elements are sets themselves). Unless specified, sets and families are taken to be finite and may be the *empty set* \emptyset . An *r*-set is a set of size *r*, that is, a set having exactly *r* elements. For any integer $n \geq 1$, [n] denotes the set $\{1, \ldots, n\}$ of the first *n* positive integers.

E-mail address: p.borg.02@cantab.net.

^{0195-6698/\$ –} see front matter \mathbbm{O} 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.ejc.2013.06.029

Given an integer $t \ge 1$, we say that a set A *t*-intersects a set B if A and B have at least t common elements. A family A is said to be *t*-intersecting if each set in A *t*-intersects all the other sets in A (i.e. $|A \cap B| \ge t$ for any $A, B \in A$ with $A \ne B$). A 1-intersecting family is also simply called an intersecting family. Families A_1, \ldots, A_k are said to be *cross-t*-intersecting if for any i and j in [k] with $i \ne j$, every set in A_i *t*-intersects every set in A_j (i.e. $|A \cap B| \ge t$ for any $A \in A_i$ and any $B \in A_j$). Cross-1-intersecting families.

Let $\binom{[n]}{r}$ denote the family of all subsets of [n] of size r. The classical Erdős–Ko–Rado (EKR) Theorem [17] says that if n is sufficiently larger than r, then the size of any t-intersecting subfamily of $\binom{[n]}{r}$ is at most $\binom{n-t}{r-t}$, which is the number of sets in the t-intersecting subfamily of $\binom{[n]}{r}$ consisting of those sets having [t] as a subset. The EKR Theorem inspired a wealth of results of this kind, that is, results that establish how large a system of sets can be under certain intersection conditions; see [10,14,18].

For *t*-intersecting subfamilies of a given family \mathcal{F} , the natural question to ask is how large they can be. For cross-*t*-intersecting families, two natural parameters arise: the sum and the product of sizes of the cross-*t*-intersecting families (note that the product of sizes of *k* families A_1, \ldots, A_k is the number of *k*-tuples (A_1, \ldots, A_k) such that $A_i \in A_i$ for each $i \in [k]$). It is therefore natural to consider the problem of maximising the sum or the product of sizes of *k* cross-*t*-intersecting subfamilies (not necessarily distinct or non-empty) of a given family \mathcal{F} .

The main result in this paper (Theorem 1.1 below) relates both the maximum sum and the maximum product of sizes of *k* cross-*t*-intersecting subfamilies of any family \mathcal{F} to the maximum size of a *t*-intersecting subfamily of \mathcal{F} when *k* is not smaller than a certain value depending on \mathcal{F} and *t*. It gives the maximum sum and the maximum product in terms of the size of a largest *t*-intersecting subfamily.

For any non-empty family \mathcal{F} , let $\alpha(\mathcal{F})$ denote the size of a largest set in \mathcal{F} (i.e. $\alpha(\mathcal{F}) = \max\{|F|: F \in \mathcal{F}\}$). Suppose $\alpha(\mathcal{F}) < t$, and let $\mathcal{A}_1, \ldots, \mathcal{A}_k$ ($k \geq 2$) be subfamilies of \mathcal{F} . Then $\mathcal{A}_1, \ldots, \mathcal{A}_k$ are cross-*t*-intersecting if and only if at most one of them is non-empty (since no set in \mathcal{F} *t*-intersects itself or another set in \mathcal{F}). Thus, if $\mathcal{A}_1, \ldots, \mathcal{A}_k$ are cross-*t*-intersecting, then the product of their sizes is 0 and the sum of their sizes is at most the size $|\mathcal{F}|$ of \mathcal{F} (which is attained if and only if one of them is \mathcal{F} and the others are all empty). This completely solves our problem for the case $\alpha(\mathcal{F}) < t$.

We now address the case $\alpha(\mathcal{F}) \ge t$. Before stating our main result, we need to introduce some definitions and parameters.

For any family A, let $A^{t,+}$ be the (*t*-intersecting) subfamily of A given by

$$\mathcal{A}^{t,+} = \{A \in \mathcal{A} : |A \cap B| \ge t \text{ for any } B \in \mathcal{A} \text{ such that } A \neq B\},\$$

and let

$$\mathcal{A}^{t,-} = \mathcal{A} \setminus \mathcal{A}^{t,+}$$

In simple terms, a set *A* in \mathcal{A} is in $\mathcal{A}^{t,-}$ if there exists a set *B* in \mathcal{A} such that $A \neq B$ and *A* does not *t*-intersect *B*, otherwise *A* is in $\mathcal{A}^{t,+}$. The definitions of $\mathcal{A}^{t,+}$ and $\mathcal{A}^{t,-}$ are generalisations of the definitions of \mathcal{A}^* and \mathcal{A}' in [5,8,9,11,12], respectively; $\mathcal{A}^* = \mathcal{A}^{1,+}$ and $\mathcal{A}' = \mathcal{A}^{1,-}$.

Let $l(\mathcal{F}, t)$ denote the size of a largest *t*-intersecting subfamily of a non-empty family \mathcal{F} . For any subfamily \mathcal{A} of \mathcal{F} , we define

$$\beta(\mathcal{F}, t, \mathcal{A}) = \begin{cases} \frac{l(\mathcal{F}, t) - |\mathcal{A}^{t,+}|}{|\mathcal{A}^{t,-}|} & \text{if } \mathcal{A}^{t,-} \neq \emptyset; \\ \frac{l(\mathcal{F}, t)}{|\mathcal{F}|} & \text{if } \mathcal{A}^{t,-} = \emptyset; \end{cases}$$

so $|\mathcal{A}^{t,+}| + \beta(\mathcal{F}, t, \mathcal{A})|\mathcal{A}^{t,-}| \leq l(\mathcal{F}, t)$ (even if $\mathcal{A}^{t,-} = \emptyset$, because $|\mathcal{A}^{t,+}| \leq l(\mathcal{F}, t)$ since $\mathcal{A}^{t,+}$ is *t*-intersecting). We now define

$$\beta(\mathcal{F}, t) = \min\{\beta(\mathcal{F}, t, \mathcal{A}): \mathcal{A} \subseteq \mathcal{F}\}.$$

Download English Version:

https://daneshyari.com/en/article/6424183

Download Persian Version:

https://daneshyari.com/article/6424183

Daneshyari.com