Cayley digraphs and graphs

Charles Delorme
LRI, Université Paris-Sud, France

ARTICLE INFO

Article history:

Available online 14 June 2013

Abstract

We shortly recall some definitions that involve refinements of connectivity, and a theorem of Y.O. Hamidoune. We consider some aspects of Cayley digraphs and vertex- and arc-transitive digraphs that he investigated.

© 2013 Elsevier Ltd. All rights reserved.

In memoriam, Y.O. Hamidoune

1. Cayley digraphs

We just recall here well-known facts.
Cayley digraphs are defined with a group G and a subset S of G : the vertices of the Cayley digraph $\operatorname{Cay}(G, S)$ are the elements of the group, and its arcs are all the couples ($a, a s$) with $a \in G$ and $s \in S$.

The digraph Cay (G, S) is strongly connected if and only if S generates G.
To avoid loops, one has to forbid the presence of the unit of G in S.
The digraph is symmetric if $S=S^{-1}$. In this case, it can be considered as a graph.
The Cayley digraph Cay (G, S) is vertex-transitive, owing to the digraph automorphisms $t_{a}: g \mapsto$ $a g$ with $a \in G$.

2. Fragments and atoms

Y.O. Hamidoune developed W. Mader's ideas on connectivity of digraphs. A cut-set is a set of vertices whose deletion leaves a digraph that is no longer strongly connected. If the underlying graph is not complete, then of course the in-neighbourhood, or the out-neighbourhood, of any vertex constitutes a cut-set, but not always of minimum order. One is interested in cut-sets of minimal order, this order is the connectivity κ of the digraph. A set whose out-neighbourhood is a cut-set T of order κ, other than the complement of T in the digraph, is called a positive fragment. One defines similarly the notion of negative fragment. A fragment (positive or negative) of minimal order is called an atom. By definition, non-complete digraphs always have atoms but they do not necessarily have both positive and negative atoms.

[^0]

Fig. 1. Two digraphs from $\mathbb{Z} / 6 \mathbb{Z}$.
W. Mader [3] had already proved that when an atom meets a fragment of a non-directed graph, then the atom is entirely contained in that fragment. Y.O. Hamidoune [1] extended this result: a positive fragment F and a positive atom A satisfy

$$
A \cap F=A \quad \text { or } \quad \emptyset
$$

and of course the same relation holds for negative fragments and atoms.
Y.O. Hamidoune [1] also proved that the atoms of a Cayley digraph on a group G are a subgroup R of the group, and of course its translates $x R, x \in G$: more precisely, R is the atom containing the identity element and is generated by its elements that belong to S.

2.1. Example

The Cayley digraph on $\mathbb{Z} / 6 \mathbb{Z}$, with generating set $\{2,3\}$, shown in Fig. 1 left admits the cut-set $\{2,3\}$ (of minimum order), that is the out-neighbourhood of 0 , or the in-neighbourhood of 5 as well. So the vertices are atoms (positive and negative). But there are other cut-sets with 2 vertices, for example $\{2,5\}$ is the out-neighbourhood of $\{1,4\}$ and the in-neighbourhood of $\{0,3\}$. Hence, besides vertices, we find fragments with 2 vertices. Here the atoms are the vertices.

2.2. Example

The Cayley digraph on $\mathbb{Z} / 6 \mathbb{Z}$, with generating set $\{2,3,5\}$, shown in Fig. 1 right admits the cut-set $\{2,5\}$ (of minimum order), that is the out-neighbourhood of $\{1,4\}$ and the in-neighbourhood of $\{0,3\}$. Any vertex has 3 out-neighbours and 3 in-neighbours. So the atoms here have 2 vertices. They are the translates of the subgroup $\{0,3\}$.

2.3. An infinite example

The positive and negative fragments may have different sizes, as shown by the infinite tree where each vertex has out-degree 2 and in-degree 1 . The connectivity is 1 , the positive fragments have one element and the negative ones have two (Fig. 2).

3. Reversing the arcs

For a finite group, it may happen that reversing all arcs gives an isomorphic digraph. The digraph will then be said to be self-reverse. The positive and negative fragments then have the same size.

This is always the case for Cayley digraphs on abelian groups. Indeed, reversing the arcs amounts to replacing the generator S by the set S^{-1} of the inverses of the elements of S. If the group G is abelian, the application $g \mapsto g^{-1}$ of the group onto itself is a group isomorphism, proving that Cay (G, S) is isomorphic to its reverse Cay $\left(G, S^{-1}\right)$.

https://daneshyari.com/en/article/6424341

Download Persian Version:

https://daneshyari.com/article/6424341

Daneshyari.com

[^0]: E-mail addresses: cd@|ri.fr, Charles.Delorme@lri.fr.

